CONOPT
Loading...
Searching...
No Matches
const02.f90
Go to the documentation of this file.
1!> @file const02.f90
2!! @ingroup FORT1THREAD_EXAMPLES
3!!
4!!
5!! Model with derivatives that become constant after other variables are fixed.
6!!
7!! This is a CONOPT implementation of the GAMS model:
8!!
9!! @verbatim
10!! e1: max x1+x3
11!! e2: x1*x2 + x3*x4 =E= 20
12!! x2.fx = 1; x4.fx = 2;
13!! 2 <= x1 <= 10; x1.l = 5
14!! 2 <= x3 <= 8; x3.l = 5
15!! @endverbatim
16!!
17!! The model is similar to const01 but the bounds on x3 have been changed so e2
18!! becomes an PostEQ2 constraint.
19!! In this model e1 is the post-triangular objective.
20!! e2 can be solved w.r.t. x1 or x3 after transferring bounds.
21!!
22!!
23!! For more information about the individual callbacks, please have a look at the source code.
24
25!> Main program. A simple setup and call of CONOPT
26!!
27Program const02
28
29 Use proginfo
30 Use coidef
31 implicit None
32!
33! Declare the user callback routines as Integer, External:
34!
35 Integer, External :: con_readmatrix ! Mandatory Matrix definition routine defined below
36 Integer, External :: con_fdeval ! Function and Derivative evaluation routine
37 ! needed a nonlinear model.
38 Integer, External :: con_fdinterval ! Function and Derivative evaluation routine
39 ! optional for a nonlinear model.
40 Integer, External :: std_status ! Standard callback for displaying solution status
41 Integer, External :: std_solution ! Standard callback for displaying solution values
42 Integer, External :: std_message ! Standard callback for managing messages
43 Integer, External :: std_errmsg ! Standard callback for managing error messages
44#if defined(itl)
45!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Con_ReadMatrix
46!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Con_FDEval
47!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Con_FDInterval
48!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Status
49!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Solution
50!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Message
51!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_ErrMsg
52#endif
53!
54! Control vector
55!
56 INTEGER, Dimension(:), Pointer :: cntvect
57 INTEGER :: coi_error
58!
59! Create and initialize a Control Vector
60!
61 call startup
62
63 coi_error = coi_createfort( cntvect )
64!
65! Tell CONOPT about the size of the model by populating the Control Vector:
66!
67 coi_error = max( coi_error, coidef_numvar( cntvect, 4 ) ) ! # variables
68 coi_error = max( coi_error, coidef_numcon( cntvect, 2 ) ) ! # constraints
69 coi_error = max( coi_error, coidef_numnz( cntvect, 6 ) ) ! # nonzeros in the Jacobian
70 coi_error = max( coi_error, coidef_numnlnz( cntvect, 4 ) ) ! # of which are nonlinear
71 coi_error = max( coi_error, coidef_optdir( cntvect, 1 ) ) ! Maximize
72 coi_error = max( coi_error, coidef_objcon( cntvect, 1 ) ) ! Objective is constraint 1
73 coi_error = max( coi_error, coidef_optfile( cntvect, 'const02.opt' ) )
74!
75! Tell CONOPT about the callback routines:
76!
77 coi_error = max( coi_error, coidef_readmatrix( cntvect, con_readmatrix ) )
78 coi_error = max( coi_error, coidef_fdeval( cntvect, con_fdeval ) )
79 coi_error = max( coi_error, coidef_fdinterval( cntvect, con_fdinterval ) )
80 coi_error = max( coi_error, coidef_status( cntvect, std_status ) )
81 coi_error = max( coi_error, coidef_solution( cntvect, std_solution ) )
82 coi_error = max( coi_error, coidef_message( cntvect, std_message ) )
83 coi_error = max( coi_error, coidef_errmsg( cntvect, std_errmsg ) )
84
85#if defined(LICENSE_INT_1) && defined(LICENSE_INT_2) && defined(LICENSE_INT_3) && defined(LICENSE_TEXT)
86 coi_error = max( coi_error, coidef_license( cntvect, license_int_1, license_int_2, license_int_3, license_text) )
87#endif
88
89 If ( coi_error .ne. 0 ) THEN
90 write(*,*)
91 write(*,*) '**** Fatal Error while loading CONOPT Callback routines.'
92 write(*,*)
93 call flog( "Skipping Solve due to setup errors", 1 )
94 ENDIF
95!
96! Save the solution so we can check the duals:
97!
98 do_allocate = .true.
99!
100! Start CONOPT:
101!
102 coi_error = coi_solve( cntvect )
103
104 write(*,*)
105 write(*,*) 'End of const02 example. Return code=',coi_error
106
107 If ( coi_error /= 0 ) then
108 call flog( "Errors encountered during solution", 1 )
109 elseif ( stacalls == 0 .or. solcalls == 0 ) then
110 call flog( "Status or Solution routine was not called", 1 )
111 elseif ( sstat /= 1 .or. mstat /= 1 ) then
112 call flog( "Solver and Model Status was not as expected (1,1)", 1 )
113 elseif ( abs( obj-15.0d0 ) > 0.000001d0 ) then
114 call flog( "Incorrect objective returned", 1 )
115 Else
116 Call checkdual( 'const02', maximize )
117 endif
118
119 if ( coi_free(cntvect) /= 0 ) call flog( "Error while freeing control vector",1)
120
121 call flog( "Successful Solve", 0 )
122
123End Program const02
124!
125! ============================================================================
126! Define information about the model:
127!
128
129!> Define information about the model
130!!
131!! @include{doc} readMatrix_params.dox
132Integer Function con_readmatrix( lower, curr, upper, vsta, type, rhs, esta, &
133 colsta, rowno, value, nlflag, n, m, nz, &
134 usrmem )
135#if defined(itl)
136!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Con_ReadMatrix
137#endif
138 implicit none
139 integer, intent (in) :: n ! number of variables
140 integer, intent (in) :: m ! number of constraints
141 integer, intent (in) :: nz ! number of nonzeros
142 real*8, intent (in out), dimension(n) :: lower ! vector of lower bounds
143 real*8, intent (in out), dimension(n) :: curr ! vector of initial values
144 real*8, intent (in out), dimension(n) :: upper ! vector of upper bounds
145 integer, intent (in out), dimension(n) :: vsta ! vector of initial variable status
146 ! (not defined here)
147 integer, intent (out), dimension(m) :: type ! vector of equation types
148 integer, intent (in out), dimension(m) :: esta ! vector of initial equation status
149 ! (not defined here)
150 real*8, intent (in out), dimension(m) :: rhs ! vector of right hand sides
151 integer, intent (in out), dimension(n+1) :: colsta ! vector with start of column indices
152 integer, intent (out), dimension(nz) :: rowno ! vector of row numbers
153 integer, intent (in out), dimension(nz) :: nlflag ! vector of nonlinearity flags
154 real*8, intent (in out), dimension(nz) :: value ! vector of matrix values
155 real*8 usrmem(*) ! optional user memory
156!
157! Information about Variables:
158! Default: Lower = -Inf, Curr = 0, and Upper = +inf.
159! Default: the status information in Vsta is not used.
160!
161 lower(1) = 2.0d0; curr(1) = 5.0d0; upper(1) = 10.0d0
162 lower(2) = 1.0d0; curr(2) = 1.0d0; upper(2) = 1.0d0
163 lower(3) = 2.0d0; curr(3) = 5.0d0; upper(3) = 8.0d0
164 lower(4) = 2.0d0; curr(4) = 2.0d0; upper(4) = 2.0d0
165!
166! Information about Constraints:
167! Default: Rhs = 0
168! Default: the status information in Esta and the function
169! value in FV are not used.
170! Default: Type: There is no default.
171! 0 = Equality,
172! 1 = Greater than or equal,
173! 2 = Less than or equal,
174! 3 = Non binding.
175!
176 type(1) = 3
177 type(2) = 0
178 rhs(2) = 20.d0
179!
180! Information about the Jacobian. We use the standard method with
181! Rowno, Value, Nlflag and Colsta and we do not use Colno.
182!
183! Colsta = Start of column indices (No Defaults):
184! Rowno = Row indices
185! Value = Value of derivative (by default only linear
186! derivatives are used)
187! Nlflag = 0 for linear and 1 for nonlinear derivative
188! (not needed for completely linear models)
189!
190! Indices
191! x(1) x(2) x(3) x(4)
192! 1: 1 4
193! 2: 2 3 5 6
194!
195 colsta(1) = 1
196 colsta(2) = 3
197 colsta(3) = 4
198 colsta(4) = 6
199 colsta(5) = 7
200 rowno(1) = 1
201 rowno(2) = 2
202 rowno(3) = 2
203 rowno(4) = 1
204 rowno(5) = 2
205 rowno(6) = 2
206!
207! Nonlinearity Structure: L = 0 are linear and NL = 1 are nonlinear
208! x(1) x(2) x(3) x(4)
209! 1: L L
210! 2: NL NL NL NL
211!
212 nlflag(1) = 0
213 nlflag(2) = 1
214 nlflag(3) = 1
215 nlflag(4) = 0
216 nlflag(5) = 1
217 nlflag(6) = 1
218!
219! Value (Linear only)
220! x(1) x(2) x(3) x(4)
221! 1: +1 +1
222! 2: NL NL NL NL
223!
224 value(1) = +1.d0
225 value(4) = +1.d0
226
227 con_readmatrix = 0 ! Return value means OK
228
229end Function con_readmatrix
230!
231!==========================================================================
232! Compute nonlinear terms and non-constant Jacobian elements
233!
234
235!> Compute nonlinear terms and non-constant Jacobian elements
236!!
237!! @include{doc} fdeval_params.dox
238Integer Function con_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
239 n, nz, thread, usrmem )
240#if defined(itl)
241!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Con_FDEval
242#endif
243 implicit none
244 integer, intent (in) :: n ! number of variables
245 integer, intent (in) :: rowno ! number of the row to be evaluated
246 integer, intent (in) :: nz ! number of nonzeros in this row
247 real*8, intent (in), dimension(n) :: x ! vector of current solution values
248 real*8, intent (in out) :: g ! constraint value
249 real*8, intent (in out), dimension(n) :: jac ! vector of derivatives for current constraint
250 integer, intent (in), dimension(nz) :: jcnm ! list of variables that appear nonlinearly
251 ! in this row. Ffor information only.
252 integer, intent (in) :: mode ! evaluation mode: 1 = function value
253 ! 2 = derivatives, 3 = both
254 integer, intent (in) :: ignerr ! if 1 then errors can be ignored as long
255 ! as errcnt is incremented
256 integer, intent (in out) :: errcnt ! error counter to be incremented in case
257 ! of function evaluation errors.
258 integer, intent (in) :: thread
259 real*8 usrmem(*) ! optional user memory
260!
261! Row 1: the objective function is nonlinear
262!
263 if ( rowno .eq. 2 ) then
264!
265! Mode = 1 or 3: Function value
266!
267 if ( mode .eq. 1 .or. mode .eq. 3 ) then
268 g = x(1)*x(2) + x(3)*x(4)
269 endif
270!
271! Mode = 2 or 3: Derivatives
272!
273 if ( mode .eq. 2 .or. mode .eq. 3 ) then
274 jac(1) = x(2)
275 jac(2) = x(1)
276 jac(3) = x(4)
277 jac(4) = x(3)
278 endif
279 con_fdeval = 0
280 Else
281 con_fdeval = 1 ! Should not happen
282 endif
283
284end Function con_fdeval
285
286
287!> Evaluating nonlinear functions and derivatives on an interval. Used in preprocessing
288!!
289!! @include{doc} fdinterval_params.dox
290Integer Function con_fdinterval( XMIN, XMAX, GMIN, GMAX, &
291 JMIN, JMAX, ROWNO, JCNM, &
292 MODE, PINF, N, NJ, USRMEM )
293#if defined(itl)
294!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Con_FDInterval
295#endif
296 Implicit None
297 INTEGER, Intent(IN) :: rowno, mode, n, nj
298 INTEGER, Dimension(NJ), Intent(IN) :: jcnm
299 real*8, Dimension(N), Intent(IN) :: xmin, xmax
300 real*8, Intent(IN OUT) :: gmin, gmax
301 real*8, Dimension(N), Intent(IN OUT) :: jmin, jmax
302 real*8, Intent(IN) :: pinf
303 real*8, Intent(IN OUT) :: usrmem(*)
304
305!
306! Row 2: x1*x2+x3*x4 ! with known positive values
307!
308 if ( rowno .eq. 2 ) then
309!
310! Mode = 1 or 3. Function
311!
312 if ( mode .eq. 1 .or. mode .eq. 3 ) then
313 gmin = xmin(1)*xmin(2) + xmin(3)*xmin(4)
314 gmax = xmax(1)*xmax(2) + xmax(3)*xmax(4)
315 endif
316!
317! Mode = 2 or 3: Derivative values:
318!
319 if ( mode .eq. 2 .or. mode .eq. 3 ) then
320 jmin(1) = xmin(2)
321 jmin(2) = xmin(1)
322 jmin(3) = xmin(4)
323 jmin(4) = xmin(3)
324 jmax(1) = xmax(2)
325 jmax(2) = xmax(1)
326 jmax(3) = xmax(4)
327 jmax(4) = xmax(3)
328 endif
330 else
331!
332! There are no other rows:
333!
335 endif
336
337end Function con_fdinterval
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
Definition comdecl.f90:128
integer function std_status(modsta, solsta, iter, objval, usrmem)
Definition comdecl.f90:82
subroutine checkdual(case, minmax)
Definition comdecl.f90:365
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
Definition comdecl.f90:203
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
Definition comdecl.f90:248
integer function con_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
Definition const01.f90:133
integer function con_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
Definition const01.f90:238
integer function con_fdinterval(xmin, xmax, gmin, gmax, jmin, jmax, rowno, jcnm, mode, pinf, n, nj, usrmem)
Evaluating nonlinear functions and derivatives on an interval. Used in preprocessing.
Definition const01.f90:291
program const02
Main program. A simple setup and call of CONOPT.
Definition const02.f90:27
integer function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
integer function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
integer function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
integer function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
integer function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
integer function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
integer function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
integer function coidef_fdinterval(cntvect, coi_fdinterval)
define callback routine for performing function and derivative evaluations on intervals.
integer function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
Definition coistart.f90:680
integer function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
Definition coistart.f90:358
integer function coidef_objcon(cntvect, objcon)
defines the Objective Constraint.
Definition coistart.f90:629
integer function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
Definition coistart.f90:437
integer function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
Definition coistart.f90:552
integer function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
Definition coistart.f90:476
integer function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
Definition coistart.f90:398
integer function coi_solve(cntvect)
method for starting the solving process of CONOPT.
Definition coistart.f90:14
#define nj
Definition mp_trans.c:46
real *8 obj
Definition comdecl.f90:10
integer solcalls
Definition comdecl.f90:9
integer sstat
Definition comdecl.f90:12
integer stacalls
Definition comdecl.f90:8
subroutine flog(msg, code)
Definition comdecl.f90:56
logical do_allocate
Definition comdecl.f90:21
integer, parameter maximize
Definition comdecl.f90:25
integer mstat
Definition comdecl.f90:11
subroutine startup
Definition comdecl.f90:35