CONOPT
Loading...
Searching...
No Matches
const09.f90
Go to the documentation of this file.
1!> @file const09.f90
2!! @ingroup FORT1THREAD_EXAMPLES
3!!
4!!
5!! Model with derivatives that become constant after other variables are fixed.
6!!
7!! This is a CONOPT implementation of the GAMS model:
8!!
9!! @verbatim
10!! e1: max x1+x3
11!! e2: x1*x2 + log(x3) =l= 2 + log(2)
12!! x2.fx = 1;
13!! 2 <= x1 <= 3; x1.l = 2.5
14!! 2 <= x3 <= 5; x3.l = 3
15!! @endverbatim
16!!
17!! The model is similar to const08 but the bounds have been changed so e2 becomes
18!! forcing at lower bound
19!! e1 is post-triangular.
20!! The expected solution is x1 = 2.0 and x3 = 2.0 and it should be globally optimal.
21!!
22!!
23!! For more information about the individual callbacks, please have a look at the source code.
24
25#if defined(_WIN32) && !defined(_WIN64)
26#define dec_directives_win32
27#endif
28
29!> Main program. A simple setup and call of CONOPT
30!!
31Program const09
32
34 Use conopt
35 implicit None
36!
37! Declare the user callback routines as Integer, External:
38!
39 Integer, External :: con_readmatrix ! Mandatory Matrix definition routine defined below
40 Integer, External :: con_fdeval ! Function and Derivative evaluation routine
41 ! needed a nonlinear model.
42 Integer, External :: con_fdinterval ! Function and Derivative evaluation routine
43 ! optional for a nonlinear model.
44 Integer, External :: std_status ! Standard callback for displaying solution status
45 Integer, External :: std_solution ! Standard callback for displaying solution values
46 Integer, External :: std_message ! Standard callback for managing messages
47 Integer, External :: std_errmsg ! Standard callback for managing error messages
48#ifdef dec_directives_win32
49!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Con_ReadMatrix
50!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Con_FDEval
51!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Con_FDInterval
52!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Status
53!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Solution
54!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Message
55!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_ErrMsg
56#endif
57!
58! Control vector
59!
60 INTEGER, Dimension(:), Pointer :: cntvect
61 INTEGER :: coi_error
62!
63! Create and initialize a Control Vector
64!
65 call startup
66
67 coi_error = coi_create( cntvect )
68!
69! Tell CONOPT about the size of the model by populating the Control Vector:
70!
71 coi_error = max( coi_error, coidef_numvar( cntvect, 3 ) ) ! # variables
72 coi_error = max( coi_error, coidef_numcon( cntvect, 2 ) ) ! # constraints
73 coi_error = max( coi_error, coidef_numnz( cntvect, 5 ) ) ! # nonzeros in the Jacobian
74 coi_error = max( coi_error, coidef_numnlnz( cntvect, 3 ) ) ! # of which are nonlinear
75 coi_error = max( coi_error, coidef_optdir( cntvect, 1 ) ) ! Maximize
76 coi_error = max( coi_error, coidef_objcon( cntvect, 1 ) ) ! Objective is constraint 1
77 coi_error = max( coi_error, coidef_optfile( cntvect, 'const09.opt' ) )
78!
79! Tell CONOPT about the callback routines:
80!
81 coi_error = max( coi_error, coidef_readmatrix( cntvect, con_readmatrix ) )
82 coi_error = max( coi_error, coidef_fdeval( cntvect, con_fdeval ) )
83 coi_error = max( coi_error, coidef_fdinterval( cntvect, con_fdinterval ) )
84 coi_error = max( coi_error, coidef_status( cntvect, std_status ) )
85 coi_error = max( coi_error, coidef_solution( cntvect, std_solution ) )
86 coi_error = max( coi_error, coidef_message( cntvect, std_message ) )
87 coi_error = max( coi_error, coidef_errmsg( cntvect, std_errmsg ) )
88
89#if defined(CONOPT_LICENSE_INT_1) && defined(CONOPT_LICENSE_INT_2) && defined(CONOPT_LICENSE_INT_3) && defined(CONOPT_LICENSE_TEXT)
90 coi_error = max( coi_error, coidef_license( cntvect, conopt_license_int_1, conopt_license_int_2, conopt_license_int_3, conopt_license_text) )
91#endif
92
93 If ( coi_error .ne. 0 ) THEN
94 write(*,*)
95 write(*,*) '**** Fatal Error while loading CONOPT Callback routines.'
96 write(*,*)
97 call flog( "Skipping Solve due to setup errors", 1 )
98 ENDIF
99!
100! Save the solution so we can check the duals:
101!
102 do_allocate = .true.
103!
104! Start CONOPT:
105!
106 coi_error = coi_solve( cntvect )
107
108 write(*,*)
109 write(*,*) 'End of const09 example. Return code=',coi_error
110
111 If ( coi_error /= 0 ) then
112 call flog( "Errors encountered during solution", 1 )
113 elseif ( stacalls == 0 .or. solcalls == 0 ) then
114 call flog( "Status or Solution routine was not called", 1 )
115 elseif ( sstat /= 1 .or. mstat /= 1 ) then
116 call flog( "Solver and Model Status was not as expected (1,1)", 1 )
117 elseif ( abs( obj-4.0d0 ) > 0.000001d0 ) then
118 call flog( "Incorrect objective returned", 1 )
119 Else
120 Call checkdual( 'const09', maximize )
121 endif
122
123 if ( coi_free(cntvect) /= 0 ) call flog( "Error while freeing control vector",1)
124
125 call flog( "Successful Solve", 0 )
127End Program const09
128!
129! ============================================================================
130! Define information about the model:
131!
132
133!> Define information about the model
134!!
135!! @include{doc} readMatrix_params.dox
136Integer Function con_readmatrix( lower, curr, upper, vsta, type, rhs, esta, &
137 colsta, rowno, value, nlflag, n, m, nz, &
138 usrmem )
139#ifdef dec_directives_win32
140!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Con_ReadMatrix
141#endif
142 implicit none
143 integer, intent (in) :: n ! number of variables
144 integer, intent (in) :: m ! number of constraints
145 integer, intent (in) :: nz ! number of nonzeros
146 real*8, intent (in out), dimension(n) :: lower ! vector of lower bounds
147 real*8, intent (in out), dimension(n) :: curr ! vector of initial values
148 real*8, intent (in out), dimension(n) :: upper ! vector of upper bounds
149 integer, intent (in out), dimension(n) :: vsta ! vector of initial variable status
150 ! (not defined here)
151 integer, intent (out), dimension(m) :: type ! vector of equation types
152 integer, intent (in out), dimension(m) :: esta ! vector of initial equation status
153 ! (not defined here)
154 real*8, intent (in out), dimension(m) :: rhs ! vector of right hand sides
155 integer, intent (in out), dimension(n+1) :: colsta ! vector with start of column indices
156 integer, intent (out), dimension(nz) :: rowno ! vector of row numbers
157 integer, intent (in out), dimension(nz) :: nlflag ! vector of nonlinearity flags
158 real*8, intent (in out), dimension(nz) :: value ! vector of matrix values
159 real*8 usrmem(*) ! optional user memory
160!
161! Information about Variables:
162! Default: Lower = -Inf, Curr = 0, and Upper = +inf.
163! Default: the status information in Vsta is not used.
164!
165 lower(1) = 2.0d0; curr(1) = 2.5d0; upper(1) = 3.0d0
166 lower(2) = 1.0d0; curr(2) = 1.0d0; upper(2) = 1.0d0
167 lower(3) = 2.0d0; curr(3) = 3.0d0; upper(3) = 5.0d0
168!
169! Information about Constraints:
170! Default: Rhs = 0
171! Default: the status information in Esta and the function
172! value in FV are not used.
173! Default: Type: There is no default.
174! 0 = Equality,
175! 1 = Greater than or equal,
176! 2 = Less than or equal,
177! 3 = Non binding.
178!
179 type(1) = 3
180 type(2) = 0
181 rhs(2) = 2.0d0 + log(2.0d0)
182!
183! Information about the Jacobian. CONOPT expects a columnwise
184! representation in Rowno, Value, Nlflag and Colsta.
185!
186! Colsta = Start of column indices (No Defaults):
187! Rowno = Row indices
188! Value = Value of derivative (by default only linear
189! derivatives are used)
190! Nlflag = 0 for linear and 1 for nonlinear derivative
191! (not needed for completely linear models)
192!
193! Indices
194! x(1) x(2) x(3)
195! 1: 1 4
196! 2: 2 3 5
197!
198 colsta(1) = 1
199 colsta(2) = 3
200 colsta(3) = 4
201 colsta(4) = 6
202 rowno(1) = 1
203 rowno(2) = 2
204 rowno(3) = 2
205 rowno(4) = 1
206 rowno(5) = 2
207!
208! Nonlinearity Structure: L = 0 are linear and NL = 1 are nonlinear
209! x(1) x(2) x(3)
210! 1: L L
211! 2: NL NL NL
212!
213 nlflag(1) = 0
214 nlflag(2) = 1
215 nlflag(3) = 1
216 nlflag(4) = 0
217 nlflag(5) = 1
218!
219! Value (Linear only)
220! x(1) x(2) x(3)
221! 1: +1 +1
222! 2: NL NL NL
223!
224 value(1) = +1.d0
225 value(4) = +1.d0
226
227 con_readmatrix = 0 ! Return value means OK
228
229end Function con_readmatrix
230!
231!==========================================================================
232! Compute nonlinear terms and non-constant Jacobian elements
233!
234
235!> Compute nonlinear terms and non-constant Jacobian elements
236!!
237!! @include{doc} fdeval_params.dox
238Integer Function con_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
239 n, nz, thread, usrmem )
240#ifdef dec_directives_win32
241!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Con_FDEval
242#endif
243 implicit none
244 integer, intent (in) :: n ! number of variables
245 integer, intent (in) :: rowno ! number of the row to be evaluated
246 integer, intent (in) :: nz ! number of nonzeros in this row
247 real*8, intent (in), dimension(n) :: x ! vector of current solution values
248 real*8, intent (in out) :: g ! constraint value
249 real*8, intent (in out), dimension(n) :: jac ! vector of derivatives for current constraint
250 integer, intent (in), dimension(nz) :: jcnm ! list of variables that appear nonlinearly
251 ! in this row. Ffor information only.
252 integer, intent (in) :: mode ! evaluation mode: 1 = function value
253 ! 2 = derivatives, 3 = both
254 integer, intent (in) :: ignerr ! if 1 then errors can be ignored as long
255 ! as errcnt is incremented
256 integer, intent (in out) :: errcnt ! error counter to be incremented in case
257 ! of function evaluation errors.
258 integer, intent (in) :: thread
259 real*8 usrmem(*) ! optional user memory
260!
261! Row 1: the objective function is nonlinear
262!
263 if ( rowno .eq. 2 ) then
264!
265! Mode = 1 or 3: Function value
266!
267 if ( mode .eq. 1 .or. mode .eq. 3 ) then
268 g = x(1)*x(2) + log(x(3))
269 endif
270!
271! Mode = 2 or 3: Derivatives
272!
273 if ( mode .eq. 2 .or. mode .eq. 3 ) then
274 jac(1) = x(2)
275 jac(2) = x(1)
276 jac(3) = 1.0d0/x(3)
277 endif
278 con_fdeval = 0
279 Else
280 con_fdeval = 1 ! Should not happen
281 endif
282
283end Function con_fdeval
284
285
286!> Evaluating nonlinear functions and derivatives on an interval. Used in preprocessing
287!!
288!! @include{doc} fdinterval_params.dox
289Integer Function con_fdinterval( XMIN, XMAX, GMIN, GMAX, &
290 JMIN, JMAX, ROWNO, JCNM, &
291 MODE, PINF, N, NJ, USRMEM )
292#ifdef dec_directives_win32
293!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Con_FDInterval
294#endif
295 Implicit None
296 INTEGER, Intent(IN) :: rowno, mode, n, nj
297 INTEGER, Dimension(NJ), Intent(IN) :: jcnm
298 real*8, Dimension(N), Intent(IN) :: xmin, xmax
299 real*8, Intent(IN OUT) :: gmin, gmax
300 real*8, Dimension(N), Intent(IN OUT) :: jmin, jmax
301 real*8, Intent(IN) :: pinf
302 real*8, Intent(IN OUT) :: usrmem(*)
303
304!
305! Row 2: x1*x2+log(x3) ! with known positive values
306!
307 if ( rowno .eq. 2 ) then
308!
309! Mode = 1 or 3. Function value
310!
311 if ( mode .eq. 1 .or. mode .eq. 3 ) then
312 gmin = xmin(1)*xmin(2) + log(xmin(3))
313 gmax = xmax(1)*xmax(2) + log(xmax(3))
314 endif
315!
316! Mode = 2 or 3: Derivative values:
317!
318 if ( mode .eq. 2 .or. mode .eq. 3 ) then
319 jmin(1) = xmin(2)
320 jmin(2) = xmin(1)
321 jmin(3) = 1.0d0/xmax(3)
322 jmax(1) = xmax(2)
323 jmax(2) = xmax(1)
324 jmax(3) = 1.d0/xmin(3)
325 endif
327 else
328!
329! There are no other rows:
330!
332 endif
333
334end Function con_fdinterval
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
Definition comdecl.f90:132
integer function std_status(modsta, solsta, iter, objval, usrmem)
Definition comdecl.f90:88
subroutine checkdual(case, minmax)
Definition comdecl.f90:394
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
Definition comdecl.f90:205
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
Definition comdecl.f90:248
integer function con_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
Definition const01.f90:127
integer function con_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
Definition const01.f90:229
integer function con_fdinterval(xmin, xmax, gmin, gmax, jmin, jmax, rowno, jcnm, mode, pinf, n, nj, usrmem)
Evaluating nonlinear functions and derivatives on an interval. Used in preprocessing.
Definition const01.f90:279
program const09
Main program. A simple setup and call of CONOPT.
Definition const09.f90:33
integer(c_int) function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
Definition conopt.f90:1265
integer(c_int) function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
Definition conopt.f90:1238
integer(c_int) function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
Definition conopt.f90:1212
integer(c_int) function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
Definition conopt.f90:1111
integer(c_int) function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
Definition conopt.f90:1291
integer(c_int) function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
Definition conopt.f90:1135
integer(c_int) function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
Definition conopt.f90:928
integer(c_int) function coidef_fdinterval(cntvect, coi_fdinterval)
define callback routine for performing function and derivative evaluations on intervals.
Definition conopt.f90:1396
integer(c_int) function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
Definition conopt.f90:293
integer(c_int) function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
Definition conopt.f90:97
integer(c_int) function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
Definition conopt.f90:121
integer(c_int) function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
Definition conopt.f90:167
integer(c_int) function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
Definition conopt.f90:213
integer(c_int) function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
Definition conopt.f90:144
integer(c_int) function coidef_objcon(cntvect, objcon)
defines the Objective Constraint.
Definition conopt.f90:239
integer(c_int) function coi_create(cntvect)
initializes CONOPT and creates the control vector.
Definition conopt.f90:1726
integer(c_int) function coi_free(cntvect)
frees the control vector.
Definition conopt.f90:1749
integer(c_int) function coi_solve(cntvect)
method for starting the solving process of CONOPT.
Definition conopt.f90:1625
#define nj
Definition mp_trans.c:46
real *8 obj
Definition comdecl.f90:16
integer solcalls
Definition comdecl.f90:15
integer sstat
Definition comdecl.f90:18
integer stacalls
Definition comdecl.f90:14
subroutine flog(msg, code)
Definition comdecl.f90:62
logical do_allocate
Definition comdecl.f90:27
integer, parameter maximize
Definition comdecl.f90:31
integer mstat
Definition comdecl.f90:17
subroutine startup
Definition comdecl.f90:41