CONOPT
Loading...
Searching...
No Matches
const11.f90
Go to the documentation of this file.
1!> @file const11.f90
2!! @ingroup FORT1THREAD_EXAMPLES
3!!
4!!
5!! Model with derivatives that become constant after other variables are fixed.
6!!
7!! This is a CONOPT implementation of the GAMS model:
8!!
9!! @verbatim
10!! e1: max x1+x3
11!! e2: x1*x2 + log(x3) =l= 1.5 + log(2)
12!! x2.fx = 1;
13!! 2 <= x1 <= 3; x1.l = 2.5
14!! 2 <= x3 <= 5; x3.l = 3
15!! @endverbatim
16!!
17!! The model is similar to const09 but the right hand side has been changed so e2 becomes
18!! infeasible.
19!! e1 is post-triangular.
20!!
21!!
22!! For more information about the individual callbacks, please have a look at the source code.
23
24#if defined(_WIN32) && !defined(_WIN64)
25#define dec_directives_win32
26#endif
27
28!> Main program. A simple setup and call of CONOPT
29!!
30Program const11
31
33 Use conopt
34 implicit None
35!
36! Declare the user callback routines as Integer, External:
37!
38 Integer, External :: con_readmatrix ! Mandatory Matrix definition routine defined below
39 Integer, External :: con_fdeval ! Function and Derivative evaluation routine
40 ! needed a nonlinear model.
41 Integer, External :: con_fdinterval ! Function and Derivative evaluation routine
42 ! optional for a nonlinear model.
43 Integer, External :: std_status ! Standard callback for displaying solution status
44 Integer, External :: std_solution ! Standard callback for displaying solution values
45 Integer, External :: std_message ! Standard callback for managing messages
46 Integer, External :: std_errmsg ! Standard callback for managing error messages
47#ifdef dec_directives_win32
48!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Con_ReadMatrix
49!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Con_FDEval
50!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Con_FDInterval
51!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Status
52!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Solution
53!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Message
54!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_ErrMsg
55#endif
56!
57! Control vector
58!
59 INTEGER, Dimension(:), Pointer :: cntvect
60 INTEGER :: coi_error
61!
62! Create and initialize a Control Vector
63!
64 call startup
65
66 coi_error = coi_create( cntvect )
67!
68! Tell CONOPT about the size of the model by populating the Control Vector:
69!
70 coi_error = max( coi_error, coidef_numvar( cntvect, 3 ) ) ! # variables
71 coi_error = max( coi_error, coidef_numcon( cntvect, 2 ) ) ! # constraints
72 coi_error = max( coi_error, coidef_numnz( cntvect, 5 ) ) ! # nonzeros in the Jacobian
73 coi_error = max( coi_error, coidef_numnlnz( cntvect, 3 ) ) ! # of which are nonlinear
74 coi_error = max( coi_error, coidef_optdir( cntvect, 1 ) ) ! Maximize
75 coi_error = max( coi_error, coidef_objcon( cntvect, 1 ) ) ! Objective is constraint 1
76 coi_error = max( coi_error, coidef_optfile( cntvect, 'const11.opt' ) )
77!
78! Tell CONOPT about the callback routines:
79!
80 coi_error = max( coi_error, coidef_readmatrix( cntvect, con_readmatrix ) )
81 coi_error = max( coi_error, coidef_fdeval( cntvect, con_fdeval ) )
82 coi_error = max( coi_error, coidef_fdinterval( cntvect, con_fdinterval ) )
83 coi_error = max( coi_error, coidef_status( cntvect, std_status ) )
84 coi_error = max( coi_error, coidef_solution( cntvect, std_solution ) )
85 coi_error = max( coi_error, coidef_message( cntvect, std_message ) )
86 coi_error = max( coi_error, coidef_errmsg( cntvect, std_errmsg ) )
87
88#if defined(CONOPT_LICENSE_INT_1) && defined(CONOPT_LICENSE_INT_2) && defined(CONOPT_LICENSE_INT_3) && defined(CONOPT_LICENSE_TEXT)
89 coi_error = max( coi_error, coidef_license( cntvect, conopt_license_int_1, conopt_license_int_2, conopt_license_int_3, conopt_license_text) )
90#endif
91
92 If ( coi_error .ne. 0 ) THEN
93 write(*,*)
94 write(*,*) '**** Fatal Error while loading CONOPT Callback routines.'
95 write(*,*)
96 call flog( "Skipping Solve due to setup errors", 1 )
97 ENDIF
98!
99! Save the solution so we can check the duals:
100!
101 do_allocate = .true.
102!
103! Start CONOPT:
104!
105 coi_error = coi_solve( cntvect )
106
107 write(*,*)
108 write(*,*) 'End of const11 example. Return code=',coi_error
109
110 If ( coi_error /= 0 ) then
111 call flog( "Errors encountered during solution", 1 )
112 elseif ( stacalls == 0 .or. solcalls == 0 ) then
113 call flog( "Status or Solution routine was not called", 1 )
114 elseif ( sstat /= 1 .or. mstat /= 4 ) then
115 call flog( "Solver and Model Status was not as expected (1,4)", 1 )
116 Else
117 Call checkdual( 'const11', infeasible )
118 endif
119
120 if ( coi_free(cntvect) /= 0 ) call flog( "Error while freeing control vector",1)
121
122 call flog( "Successful Solve", 0 )
123!
124! Free solution memory
125!
126 call finalize
128End Program const11
129!
130! ============================================================================
131! Define information about the model:
132!
133
134!> Define information about the model
135!!
136!! @include{doc} readMatrix_params.dox
137Integer Function con_readmatrix( lower, curr, upper, vsta, type, rhs, esta, &
138 colsta, rowno, value, nlflag, n, m, nz, &
139 usrmem )
140#ifdef dec_directives_win32
141!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Con_ReadMatrix
142#endif
143 implicit none
144 integer, intent (in) :: n ! number of variables
145 integer, intent (in) :: m ! number of constraints
146 integer, intent (in) :: nz ! number of nonzeros
147 real*8, intent (in out), dimension(n) :: lower ! vector of lower bounds
148 real*8, intent (in out), dimension(n) :: curr ! vector of initial values
149 real*8, intent (in out), dimension(n) :: upper ! vector of upper bounds
150 integer, intent (in out), dimension(n) :: vsta ! vector of initial variable status
151 ! (not defined here)
152 integer, intent (out), dimension(m) :: type ! vector of equation types
153 integer, intent (in out), dimension(m) :: esta ! vector of initial equation status
154 ! (not defined here)
155 real*8, intent (in out), dimension(m) :: rhs ! vector of right hand sides
156 integer, intent (in out), dimension(n+1) :: colsta ! vector with start of column indices
157 integer, intent (out), dimension(nz) :: rowno ! vector of row numbers
158 integer, intent (in out), dimension(nz) :: nlflag ! vector of nonlinearity flags
159 real*8, intent (in out), dimension(nz) :: value ! vector of matrix values
160 real*8 usrmem(*) ! optional user memory
161!
162! Information about Variables:
163! Default: Lower = -Inf, Curr = 0, and Upper = +inf.
164! Default: the status information in Vsta is not used.
165!
166 lower(1) = 2.0d0; curr(1) = 2.5d0; upper(1) = 3.0d0
167 lower(2) = 1.0d0; curr(2) = 1.0d0; upper(2) = 1.0d0
168 lower(3) = 2.0d0; curr(3) = 3.0d0; upper(3) = 5.0d0
169!
170! Information about Constraints:
171! Default: Rhs = 0
172! Default: the status information in Esta and the function
173! value in FV are not used.
174! Default: Type: There is no default.
175! 0 = Equality,
176! 1 = Greater than or equal,
177! 2 = Less than or equal,
178! 3 = Non binding.
179!
180 type(1) = 3
181 type(2) = 0
182 rhs(2) = 1.5d0 + log(2.0d0)
183!
184! Information about the Jacobian. CONOPT expects a columnwise
185! representation in Rowno, Value, Nlflag and Colsta.
186!
187! Colsta = Start of column indices (No Defaults):
188! Rowno = Row indices
189! Value = Value of derivative (by default only linear
190! derivatives are used)
191! Nlflag = 0 for linear and 1 for nonlinear derivative
192! (not needed for completely linear models)
193!
194! Indices
195! x(1) x(2) x(3)
196! 1: 1 3
197! 2: 2 4 5
198!
199 colsta(1) = 1
200 colsta(2) = 3
201 colsta(3) = 5
202 colsta(4) = 6
203 rowno(1) = 1
204 rowno(2) = 2
205 rowno(3) = 1
206 rowno(4) = 2
207 rowno(5) = 2
208!
209! Nonlinearity Structure: L = 0 are linear and NL = 1 are nonlinear
210! x(1) x(2) x(3)
211! 1: L L
212! 2: NL NL NL
213!
214 nlflag(1) = 0
215 nlflag(2) = 1
216 nlflag(3) = 0
217 nlflag(4) = 1
218 nlflag(5) = 1
219!
220! Value (Linear only)
221! x(1) x(2) x(3)
222! 1: +1 +1
223! 2: NL NL NL
224!
225 value(1) = +1.d0
226 value(3) = +1.d0
227
228 con_readmatrix = 0 ! Return value means OK
229
230end Function con_readmatrix
231!
232!==========================================================================
233! Compute nonlinear terms and non-constant Jacobian elements
234!
235
236!> Compute nonlinear terms and non-constant Jacobian elements
237!!
238!! @include{doc} fdeval_params.dox
239Integer Function con_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
240 n, nz, thread, usrmem )
241#ifdef dec_directives_win32
242!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Con_FDEval
243#endif
244 implicit none
245 integer, intent (in) :: n ! number of variables
246 integer, intent (in) :: rowno ! number of the row to be evaluated
247 integer, intent (in) :: nz ! number of nonzeros in this row
248 real*8, intent (in), dimension(n) :: x ! vector of current solution values
249 real*8, intent (in out) :: g ! constraint value
250 real*8, intent (in out), dimension(n) :: jac ! vector of derivatives for current constraint
251 integer, intent (in), dimension(nz) :: jcnm ! list of variables that appear nonlinearly
252 ! in this row. Ffor information only.
253 integer, intent (in) :: mode ! evaluation mode: 1 = function value
254 ! 2 = derivatives, 3 = both
255 integer, intent (in) :: ignerr ! if 1 then errors can be ignored as long
256 ! as errcnt is incremented
257 integer, intent (in out) :: errcnt ! error counter to be incremented in case
258 ! of function evaluation errors.
259 integer, intent (in) :: thread
260 real*8 usrmem(*) ! optional user memory
261!
262! Row 1: the objective function is nonlinear
263!
264 if ( rowno .eq. 2 ) then
265!
266! Mode = 1 or 3: Function value
267!
268 if ( mode .eq. 1 .or. mode .eq. 3 ) then
269 g = x(1)*x(2) + log(x(3))
270 endif
271!
272! Mode = 2 or 3: Derivatives
273!
274 if ( mode .eq. 2 .or. mode .eq. 3 ) then
275 jac(1) = x(2)
276 jac(2) = x(1)
277 jac(3) = 1.0d0/x(3)
278 endif
279 con_fdeval = 0
280 Else
281 con_fdeval = 1 ! Should not happen
282 endif
283
284end Function con_fdeval
285
286
287!> Evaluating nonlinear functions and derivatives on an interval. Used in preprocessing
288!!
289!! @include{doc} fdinterval_params.dox
290Integer Function con_fdinterval( XMIN, XMAX, GMIN, GMAX, &
291 JMIN, JMAX, ROWNO, JCNM, &
292 MODE, PINF, N, NJ, USRMEM )
293#ifdef dec_directives_win32
294!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Con_FDInterval
295#endif
296 Implicit None
297 INTEGER, Intent(IN) :: rowno, mode, n, nj
298 INTEGER, Dimension(NJ), Intent(IN) :: jcnm
299 real*8, Dimension(N), Intent(IN) :: xmin, xmax
300 real*8, Intent(IN OUT) :: gmin, gmax
301 real*8, Dimension(N), Intent(IN OUT) :: jmin, jmax
302 real*8, Intent(IN) :: pinf
303 real*8, Intent(IN OUT) :: usrmem(*)
304
305!
306! Row 2: x1*x2+log(x3) ! with known positive values
307!
308 if ( rowno .eq. 2 ) then
309!
310! Mode = 1 or 3. Function value
311!
312 if ( mode .eq. 1 .or. mode .eq. 3 ) then
313 gmin = xmin(1)*xmin(2) + log(xmin(3))
314 gmax = xmax(1)*xmax(2) + log(xmax(3))
315 endif
316!
317! Mode = 2 or 3: Derivative values:
318!
319 if ( mode .eq. 2 .or. mode .eq. 3 ) then
320 jmin(1) = xmin(2)
321 jmin(2) = xmin(1)
322 jmin(3) = 1.0d0/xmax(3)
323 jmax(1) = xmax(2)
324 jmax(2) = xmax(1)
325 jmax(3) = 1.d0/xmin(3)
326 endif
328 else
329!
330! There are no other rows:
331!
333 endif
334
335end Function con_fdinterval
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
Definition comdecl.f90:170
integer function std_status(modsta, solsta, iter, objval, usrmem)
Definition comdecl.f90:126
subroutine checkdual(case, minmax)
Definition comdecl.f90:432
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
Definition comdecl.f90:243
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
Definition comdecl.f90:286
integer function con_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
Definition const01.f90:131
integer function con_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
Definition const01.f90:233
integer function con_fdinterval(xmin, xmax, gmin, gmax, jmin, jmax, rowno, jcnm, mode, pinf, n, nj, usrmem)
Evaluating nonlinear functions and derivatives on an interval. Used in preprocessing.
Definition const01.f90:283
program const11
Main program. A simple setup and call of CONOPT.
Definition const11.f90:32
integer(c_int) function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
Definition conopt.f90:1265
integer(c_int) function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
Definition conopt.f90:1238
integer(c_int) function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
Definition conopt.f90:1212
integer(c_int) function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
Definition conopt.f90:1111
integer(c_int) function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
Definition conopt.f90:1291
integer(c_int) function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
Definition conopt.f90:1135
integer(c_int) function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
Definition conopt.f90:928
integer(c_int) function coidef_fdinterval(cntvect, coi_fdinterval)
define callback routine for performing function and derivative evaluations on intervals.
Definition conopt.f90:1396
integer(c_int) function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
Definition conopt.f90:293
integer(c_int) function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
Definition conopt.f90:97
integer(c_int) function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
Definition conopt.f90:121
integer(c_int) function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
Definition conopt.f90:167
integer(c_int) function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
Definition conopt.f90:213
integer(c_int) function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
Definition conopt.f90:144
integer(c_int) function coidef_objcon(cntvect, objcon)
defines the Objective Constraint.
Definition conopt.f90:239
integer(c_int) function coi_create(cntvect)
initializes CONOPT and creates the control vector.
Definition conopt.f90:1726
integer(c_int) function coi_free(cntvect)
frees the control vector.
Definition conopt.f90:1749
integer(c_int) function coi_solve(cntvect)
method for starting the solving process of CONOPT.
Definition conopt.f90:1625
#define nj
Definition mp_trans.c:46
integer solcalls
Definition comdecl.f90:15
integer sstat
Definition comdecl.f90:18
subroutine finalize
Definition comdecl.f90:79
integer, parameter infeasible
Definition comdecl.f90:31
integer stacalls
Definition comdecl.f90:14
subroutine flog(msg, code)
Definition comdecl.f90:62
logical do_allocate
Definition comdecl.f90:27
integer mstat
Definition comdecl.f90:17
subroutine startup
Definition comdecl.f90:41