CONOPT
Loading...
Searching...
No Matches
const11.f90
Go to the documentation of this file.
1!> @file const11.f90
2!! @ingroup FORT1THREAD_EXAMPLES
3!!
4!!
5!! Model with derivatives that become constant after other variables are fixed.
6!!
7!! This is a CONOPT implementation of the GAMS model:
8!!
9!! @verbatim
10!! e1: max x1+x3
11!! e2: x1*x2 + log(x3) =l= 1.5 + log(2)
12!! x2.fx = 1;
13!! 2 <= x1 <= 3; x1.l = 2.5
14!! 2 <= x3 <= 5; x3.l = 3
15!! @endverbatim
16!!
17!! The model is similar to const09 but the right hand side has been changed so e2 becomes
18!! infeasible.
19!! e1 is post-triangular.
20!!
21!!
22!! For more information about the individual callbacks, please have a look at the source code.
23
24#if defined(_WIN32) && !defined(_WIN64)
25#define dec_directives_win32
26#endif
27
28!> Main program. A simple setup and call of CONOPT
29!!
30Program const11
31
33 Use conopt
34 implicit None
35!
36! Declare the user callback routines as Integer, External:
37!
38 Integer, External :: con_readmatrix ! Mandatory Matrix definition routine defined below
39 Integer, External :: con_fdeval ! Function and Derivative evaluation routine
40 ! needed a nonlinear model.
41 Integer, External :: con_fdinterval ! Function and Derivative evaluation routine
42 ! optional for a nonlinear model.
43 Integer, External :: std_status ! Standard callback for displaying solution status
44 Integer, External :: std_solution ! Standard callback for displaying solution values
45 Integer, External :: std_message ! Standard callback for managing messages
46 Integer, External :: std_errmsg ! Standard callback for managing error messages
47#ifdef dec_directives_win32
48!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Con_ReadMatrix
49!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Con_FDEval
50!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Con_FDInterval
51!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Status
52!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Solution
53!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Message
54!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_ErrMsg
55#endif
56!
57! Control vector
58!
59 INTEGER, Dimension(:), Pointer :: cntvect
60 INTEGER :: coi_error
61!
62! Create and initialize a Control Vector
63!
64 call startup
65
66 coi_error = coi_create( cntvect )
67!
68! Tell CONOPT about the size of the model by populating the Control Vector:
69!
70 coi_error = max( coi_error, coidef_numvar( cntvect, 3 ) ) ! # variables
71 coi_error = max( coi_error, coidef_numcon( cntvect, 2 ) ) ! # constraints
72 coi_error = max( coi_error, coidef_numnz( cntvect, 5 ) ) ! # nonzeros in the Jacobian
73 coi_error = max( coi_error, coidef_numnlnz( cntvect, 3 ) ) ! # of which are nonlinear
74 coi_error = max( coi_error, coidef_optdir( cntvect, 1 ) ) ! Maximize
75 coi_error = max( coi_error, coidef_objcon( cntvect, 1 ) ) ! Objective is constraint 1
76 coi_error = max( coi_error, coidef_optfile( cntvect, 'const11.opt' ) )
77!
78! Tell CONOPT about the callback routines:
79!
80 coi_error = max( coi_error, coidef_readmatrix( cntvect, con_readmatrix ) )
81 coi_error = max( coi_error, coidef_fdeval( cntvect, con_fdeval ) )
82 coi_error = max( coi_error, coidef_fdinterval( cntvect, con_fdinterval ) )
83 coi_error = max( coi_error, coidef_status( cntvect, std_status ) )
84 coi_error = max( coi_error, coidef_solution( cntvect, std_solution ) )
85 coi_error = max( coi_error, coidef_message( cntvect, std_message ) )
86 coi_error = max( coi_error, coidef_errmsg( cntvect, std_errmsg ) )
87
88#if defined(CONOPT_LICENSE_INT_1) && defined(CONOPT_LICENSE_INT_2) && defined(CONOPT_LICENSE_INT_3) && defined(CONOPT_LICENSE_TEXT)
89 coi_error = max( coi_error, coidef_license( cntvect, conopt_license_int_1, conopt_license_int_2, conopt_license_int_3, conopt_license_text) )
90#endif
91
92 If ( coi_error .ne. 0 ) THEN
93 write(*,*)
94 write(*,*) '**** Fatal Error while loading CONOPT Callback routines.'
95 write(*,*)
96 call flog( "Skipping Solve due to setup errors", 1 )
97 ENDIF
98!
99! Save the solution so we can check the duals:
100!
101 do_allocate = .true.
102!
103! Start CONOPT:
104!
105 coi_error = coi_solve( cntvect )
106
107 write(*,*)
108 write(*,*) 'End of const11 example. Return code=',coi_error
109
110 If ( coi_error /= 0 ) then
111 call flog( "Errors encountered during solution", 1 )
112 elseif ( stacalls == 0 .or. solcalls == 0 ) then
113 call flog( "Status or Solution routine was not called", 1 )
114 elseif ( sstat /= 1 .or. mstat /= 4 ) then
115 call flog( "Solver and Model Status was not as expected (1,4)", 1 )
116 Else
117 Call checkdual( 'const11', infeasible )
118 endif
119
120 if ( coi_free(cntvect) /= 0 ) call flog( "Error while freeing control vector",1)
121
122 call flog( "Successful Solve", 0 )
124End Program const11
125!
126! ============================================================================
127! Define information about the model:
128!
129
130!> Define information about the model
131!!
132!! @include{doc} readMatrix_params.dox
133Integer Function con_readmatrix( lower, curr, upper, vsta, type, rhs, esta, &
134 colsta, rowno, value, nlflag, n, m, nz, &
135 usrmem )
136#ifdef dec_directives_win32
137!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Con_ReadMatrix
138#endif
139 implicit none
140 integer, intent (in) :: n ! number of variables
141 integer, intent (in) :: m ! number of constraints
142 integer, intent (in) :: nz ! number of nonzeros
143 real*8, intent (in out), dimension(n) :: lower ! vector of lower bounds
144 real*8, intent (in out), dimension(n) :: curr ! vector of initial values
145 real*8, intent (in out), dimension(n) :: upper ! vector of upper bounds
146 integer, intent (in out), dimension(n) :: vsta ! vector of initial variable status
147 ! (not defined here)
148 integer, intent (out), dimension(m) :: type ! vector of equation types
149 integer, intent (in out), dimension(m) :: esta ! vector of initial equation status
150 ! (not defined here)
151 real*8, intent (in out), dimension(m) :: rhs ! vector of right hand sides
152 integer, intent (in out), dimension(n+1) :: colsta ! vector with start of column indices
153 integer, intent (out), dimension(nz) :: rowno ! vector of row numbers
154 integer, intent (in out), dimension(nz) :: nlflag ! vector of nonlinearity flags
155 real*8, intent (in out), dimension(nz) :: value ! vector of matrix values
156 real*8 usrmem(*) ! optional user memory
157!
158! Information about Variables:
159! Default: Lower = -Inf, Curr = 0, and Upper = +inf.
160! Default: the status information in Vsta is not used.
161!
162 lower(1) = 2.0d0; curr(1) = 2.5d0; upper(1) = 3.0d0
163 lower(2) = 1.0d0; curr(2) = 1.0d0; upper(2) = 1.0d0
164 lower(3) = 2.0d0; curr(3) = 3.0d0; upper(3) = 5.0d0
165!
166! Information about Constraints:
167! Default: Rhs = 0
168! Default: the status information in Esta and the function
169! value in FV are not used.
170! Default: Type: There is no default.
171! 0 = Equality,
172! 1 = Greater than or equal,
173! 2 = Less than or equal,
174! 3 = Non binding.
175!
176 type(1) = 3
177 type(2) = 0
178 rhs(2) = 1.5d0 + log(2.0d0)
179!
180! Information about the Jacobian. CONOPT expects a columnwise
181! representation in Rowno, Value, Nlflag and Colsta.
182!
183! Colsta = Start of column indices (No Defaults):
184! Rowno = Row indices
185! Value = Value of derivative (by default only linear
186! derivatives are used)
187! Nlflag = 0 for linear and 1 for nonlinear derivative
188! (not needed for completely linear models)
189!
190! Indices
191! x(1) x(2) x(3)
192! 1: 1 3
193! 2: 2 4 5
194!
195 colsta(1) = 1
196 colsta(2) = 3
197 colsta(3) = 5
198 colsta(4) = 6
199 rowno(1) = 1
200 rowno(2) = 2
201 rowno(3) = 1
202 rowno(4) = 2
203 rowno(5) = 2
204!
205! Nonlinearity Structure: L = 0 are linear and NL = 1 are nonlinear
206! x(1) x(2) x(3)
207! 1: L L
208! 2: NL NL NL
209!
210 nlflag(1) = 0
211 nlflag(2) = 1
212 nlflag(3) = 0
213 nlflag(4) = 1
214 nlflag(5) = 1
215!
216! Value (Linear only)
217! x(1) x(2) x(3)
218! 1: +1 +1
219! 2: NL NL NL
220!
221 value(1) = +1.d0
222 value(3) = +1.d0
223
224 con_readmatrix = 0 ! Return value means OK
225
226end Function con_readmatrix
227!
228!==========================================================================
229! Compute nonlinear terms and non-constant Jacobian elements
230!
231
232!> Compute nonlinear terms and non-constant Jacobian elements
233!!
234!! @include{doc} fdeval_params.dox
235Integer Function con_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
236 n, nz, thread, usrmem )
237#ifdef dec_directives_win32
238!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Con_FDEval
239#endif
240 implicit none
241 integer, intent (in) :: n ! number of variables
242 integer, intent (in) :: rowno ! number of the row to be evaluated
243 integer, intent (in) :: nz ! number of nonzeros in this row
244 real*8, intent (in), dimension(n) :: x ! vector of current solution values
245 real*8, intent (in out) :: g ! constraint value
246 real*8, intent (in out), dimension(n) :: jac ! vector of derivatives for current constraint
247 integer, intent (in), dimension(nz) :: jcnm ! list of variables that appear nonlinearly
248 ! in this row. Ffor information only.
249 integer, intent (in) :: mode ! evaluation mode: 1 = function value
250 ! 2 = derivatives, 3 = both
251 integer, intent (in) :: ignerr ! if 1 then errors can be ignored as long
252 ! as errcnt is incremented
253 integer, intent (in out) :: errcnt ! error counter to be incremented in case
254 ! of function evaluation errors.
255 integer, intent (in) :: thread
256 real*8 usrmem(*) ! optional user memory
257!
258! Row 1: the objective function is nonlinear
259!
260 if ( rowno .eq. 2 ) then
261!
262! Mode = 1 or 3: Function value
263!
264 if ( mode .eq. 1 .or. mode .eq. 3 ) then
265 g = x(1)*x(2) + log(x(3))
266 endif
267!
268! Mode = 2 or 3: Derivatives
269!
270 if ( mode .eq. 2 .or. mode .eq. 3 ) then
271 jac(1) = x(2)
272 jac(2) = x(1)
273 jac(3) = 1.0d0/x(3)
274 endif
275 con_fdeval = 0
276 Else
277 con_fdeval = 1 ! Should not happen
278 endif
279
280end Function con_fdeval
281
282
283!> Evaluating nonlinear functions and derivatives on an interval. Used in preprocessing
284!!
285!! @include{doc} fdinterval_params.dox
286Integer Function con_fdinterval( XMIN, XMAX, GMIN, GMAX, &
287 JMIN, JMAX, ROWNO, JCNM, &
288 MODE, PINF, N, NJ, USRMEM )
289#ifdef dec_directives_win32
290!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Con_FDInterval
291#endif
292 Implicit None
293 INTEGER, Intent(IN) :: rowno, mode, n, nj
294 INTEGER, Dimension(NJ), Intent(IN) :: jcnm
295 real*8, Dimension(N), Intent(IN) :: xmin, xmax
296 real*8, Intent(IN OUT) :: gmin, gmax
297 real*8, Dimension(N), Intent(IN OUT) :: jmin, jmax
298 real*8, Intent(IN) :: pinf
299 real*8, Intent(IN OUT) :: usrmem(*)
300
301!
302! Row 2: x1*x2+log(x3) ! with known positive values
303!
304 if ( rowno .eq. 2 ) then
305!
306! Mode = 1 or 3. Function value
307!
308 if ( mode .eq. 1 .or. mode .eq. 3 ) then
309 gmin = xmin(1)*xmin(2) + log(xmin(3))
310 gmax = xmax(1)*xmax(2) + log(xmax(3))
311 endif
312!
313! Mode = 2 or 3: Derivative values:
314!
315 if ( mode .eq. 2 .or. mode .eq. 3 ) then
316 jmin(1) = xmin(2)
317 jmin(2) = xmin(1)
318 jmin(3) = 1.0d0/xmax(3)
319 jmax(1) = xmax(2)
320 jmax(2) = xmax(1)
321 jmax(3) = 1.d0/xmin(3)
322 endif
324 else
325!
326! There are no other rows:
327!
329 endif
330
331end Function con_fdinterval
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
Definition comdecl.f90:132
integer function std_status(modsta, solsta, iter, objval, usrmem)
Definition comdecl.f90:88
subroutine checkdual(case, minmax)
Definition comdecl.f90:394
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
Definition comdecl.f90:205
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
Definition comdecl.f90:248
integer function con_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
Definition const01.f90:127
integer function con_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
Definition const01.f90:229
integer function con_fdinterval(xmin, xmax, gmin, gmax, jmin, jmax, rowno, jcnm, mode, pinf, n, nj, usrmem)
Evaluating nonlinear functions and derivatives on an interval. Used in preprocessing.
Definition const01.f90:279
program const11
Main program. A simple setup and call of CONOPT.
Definition const11.f90:32
integer(c_int) function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
Definition conopt.f90:1265
integer(c_int) function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
Definition conopt.f90:1238
integer(c_int) function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
Definition conopt.f90:1212
integer(c_int) function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
Definition conopt.f90:1111
integer(c_int) function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
Definition conopt.f90:1291
integer(c_int) function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
Definition conopt.f90:1135
integer(c_int) function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
Definition conopt.f90:928
integer(c_int) function coidef_fdinterval(cntvect, coi_fdinterval)
define callback routine for performing function and derivative evaluations on intervals.
Definition conopt.f90:1396
integer(c_int) function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
Definition conopt.f90:293
integer(c_int) function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
Definition conopt.f90:97
integer(c_int) function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
Definition conopt.f90:121
integer(c_int) function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
Definition conopt.f90:167
integer(c_int) function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
Definition conopt.f90:213
integer(c_int) function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
Definition conopt.f90:144
integer(c_int) function coidef_objcon(cntvect, objcon)
defines the Objective Constraint.
Definition conopt.f90:239
integer(c_int) function coi_create(cntvect)
initializes CONOPT and creates the control vector.
Definition conopt.f90:1726
integer(c_int) function coi_free(cntvect)
frees the control vector.
Definition conopt.f90:1749
integer(c_int) function coi_solve(cntvect)
method for starting the solving process of CONOPT.
Definition conopt.f90:1625
#define nj
Definition mp_trans.c:46
integer solcalls
Definition comdecl.f90:15
integer sstat
Definition comdecl.f90:18
integer, parameter infeasible
Definition comdecl.f90:31
integer stacalls
Definition comdecl.f90:14
subroutine flog(msg, code)
Definition comdecl.f90:62
logical do_allocate
Definition comdecl.f90:27
integer mstat
Definition comdecl.f90:17
subroutine startup
Definition comdecl.f90:41