61#if defined(_WIN32) && !defined(_WIN64)
62#define dec_directives_win32
95#ifdef dec_directives_win32
109 INTEGER,
Dimension(:),
Pointer :: cntvect
124 coi_error = max( coi_error,
coidef_numnz( cntvect, 6*ne ) )
129 coi_error = max( coi_error,
coidef_optfile( cntvect,
'elec2.opt' ) )
143#if defined(CONOPT_LICENSE_INT_1) && defined(CONOPT_LICENSE_INT_2) && defined(CONOPT_LICENSE_INT_3) && defined(CONOPT_LICENSE_TEXT)
144 coi_error = max( coi_error,
coidef_license( cntvect, conopt_license_int_1, conopt_license_int_2, conopt_license_int_3, conopt_license_text) )
147 If ( coi_error .ne. 0 )
THEN
149 write(*,*)
'**** Fatal Error while loading CONOPT Callback routines.'
151 call flog(
"Skipping Solve due to setup errors", 1 )
160 If ( coi_error /= 0 )
then
161 call flog(
"Solve 1: Errors encountered during solution", 1 )
163 call flog(
"Solve 1: Status or Solution routine was not called", 1 )
165 call flog(
"Solve 1: Solver and Model Status was not as expected (1,2)", 1 )
166 elseif (
hcalls /= 0 )
then
167 call flog(
"Solve 1: Solve used 2nd derivatives but should reject on memory", 1 )
176 If ( coi_error /= 0 )
then
177 call flog(
"Solve 2: Errors encountered during solution", 1 )
179 call flog(
"Solve 2: Status or Solution routine was not called", 1 )
181 call flog(
"Solve 2: Solver and Model Status was not as expected (1,2)", 1 )
182 elseif (
hcalls == 0 )
then
183 call flog(
"Solve 2: Solve did not use 2nd derivatives but should have enough memory", 1 )
188 write(*,*)
'End of Electron example. Return code=',coi_error
190 if (
coi_free(cntvect) /= 0 )
call flog(
"Error while freeing control vector",1)
192 call flog(
"Successful Solve", 0 )
203 seed = mod(seed*1027+25,1048576)
204 rndx = float(seed)/float(1048576)
215Integer Function elec_readmatrix( lower, curr, upper, vsta, type, rhs, esta, &
216 colsta, rowno, value, nlflag, n, m, nz, &
218#ifdef dec_directives_win32
222 integer,
intent (in) :: n
223 integer,
intent (in) :: m
224 integer,
intent (in) :: nz
225 real*8,
intent (in out),
dimension(n) :: lower
226 real*8,
intent (in out),
dimension(n) :: curr
227 real*8,
intent (in out),
dimension(n) :: upper
228 integer,
intent (in out),
dimension(n) :: vsta
230 integer,
intent (out),
dimension(m) ::
type
231 integer,
intent (in out),
dimension(m) :: esta
233 real*8,
intent (in out),
dimension(m) :: rhs
234 integer,
intent (in out),
dimension(n+1) :: colsta
235 integer,
intent (out),
dimension(nz) :: rowno
236 integer,
intent (in out),
dimension(nz) :: nlflag
237 real*8,
intent (in out),
dimension(nz) ::
value
242 real*8,
parameter :: pi = 3.141592
244 Real,
External ::
rndx
255 curr(i ) = cos(theta)*sin(phi)
256 curr(i+ ne) = sin(theta)*sin(phi)
257 curr(i+2*ne) = cos(phi)
339Integer Function elec_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
340 n, nz, thread, usrmem )
341#ifdef dec_directives_win32
345 integer,
intent (in) :: n
346 integer,
intent (in) :: rowno
347 integer,
intent (in) :: nz
348 real*8,
intent (in),
dimension(n) :: x
349 real*8,
intent (in out) :: g
350 real*8,
intent (in out),
dimension(n) :: jac
351 integer,
intent (in),
dimension(nz) :: jcnm
353 integer,
intent (in) :: mode
355 integer,
intent (in) :: ignerr
357 integer,
intent (in out) :: errcnt
359 integer,
intent (in) :: thread
364 real*8 :: dist, dist32, tx, ty, tz
370 if ( rowno == ne+1 )
then
374 if ( mode .eq. 1 .or. mode .eq. 3 )
then
378 dist = (x(i)-x(j))**2 + (x(i+ne)-x(j+ne))**2 + (x(i+2*ne)-x(j+2*ne))**2
379 g = g + 1.d0/sqrt(dist)
386 if ( mode .eq. 2 .or. mode .eq. 3 )
then
392 dist = (x(i)-x(j))**2 + (x(i+ne)-x(j+ne))**2 + (x(i+2*ne)-x(j+2*ne))**2
393 dist32 = (1.d0/sqrt(dist))**3
394 tx = -(x(i)-x(j))*dist32
395 ty = -(x(i+ne)-x(j+ne))*dist32
396 tz = -(x(i+2*ne)-x(j+2*ne))*dist32
399 jac(i+ne) = jac(i+ne) + ty
400 jac(j+ne) = jac(j+ne) - ty
401 jac(i+2*ne) = jac(i+2*ne) + tz
402 jac(j+2*ne) = jac(j+2*ne) - tz
412 if ( mode .eq. 1 .or. mode .eq. 3 )
then
413 g = x(i)**2 + x(i+ne)**2 + x(i+2*ne)**2
418 if ( mode .eq. 2 .or. mode .eq. 3 )
then
420 jac(i+ne) = 2.d0*x(i+ne)
421 jac(i+2*ne) = 2.d0*x(i+2*ne)
429Integer Function elec_2dlagrsize( NODRV, NumVar, NumCon, NumHess, MaxHess, UsrMem )
430#ifdef dec_directives_win32
436 Integer,
Intent (IN) :: numvar, numcon, maxhess
437 Integer,
Intent (IN OUT) :: nodrv, numhess
438 real*8,
Intent(IN OUT) :: usrmem(*)
442 numhess = numvar * (numvar+1)/2
451Integer Function elec_2dlagrstr( HSRW, HSCL, NODRV, NumVar, NumCon, NumHess, UsrMem )
452#ifdef dec_directives_win32
458 Integer,
Intent (IN) :: numvar, numcon, numhess
459 Integer,
Intent (IN) :: nodrv
460 Integer,
Dimension(*) :: hsrw, hscl
461 real*8,
Intent(IN OUT) :: usrmem(*)
483Integer Function elec_2dlagrval( X, U, HSRW, HSCL, HSVL, NODRV, NumVar, NumCon, NumHess, UsrMem )
484#ifdef dec_directives_win32
490 Integer,
Intent (IN) :: numvar, numcon, numhess
491 Integer,
Intent (IN OUT) :: nodrv
492 real*8,
Dimension(NumVar),
Intent (IN) :: x
493 real*8,
Dimension(NumCon),
Intent (IN) :: u
494 Integer,
Dimension(NumHess),
Intent (IN) :: hsrw, hscl
495 real*8,
Dimension(NumHess),
Intent (Out) :: hsvl
496 real*8,
Intent(IN OUT) :: usrmem(*)
499 integer :: k, l, ix, iy, iz, jx, jy, jz
500 real*8 :: tx, ty, tz, dist, distsq, dist3, dist5
515 hsvl(k) = hsvl(k) + 2.d0*u(l)
517 hsvl(k) = hsvl(k) + 2.d0*u(l)
518 k =
pos(l+2*ne,l+2*ne)
519 hsvl(k) = hsvl(k) + 2.d0*u(l)
521 if ( u(ne+1) /= 0.0d0 )
Then
536 dist = tx**2 + ty**2 + tz**2
546 distsq = 1/sqrt(dist)
559 hsvl(k) = hsvl(k) + 3.0d0*dist5*tx**2 - dist3
561 hsvl(k) = hsvl(k) + 3.0d0*dist5*tx**2 - dist3
563 hsvl(k) = hsvl(k) - 3.0d0*dist5*tx**2 + dist3
565 hsvl(k) = hsvl(k) + 3.0d0*dist5*ty**2 - dist3
567 hsvl(k) = hsvl(k) + 3.0d0*dist5*ty**2 - dist3
569 hsvl(k) = hsvl(k) - 3.0d0*dist5*ty**2 + dist3
571 hsvl(k) = hsvl(k) + 3.0d0*dist5*tz**2 - dist3
573 hsvl(k) = hsvl(k) + 3.0d0*dist5*tz**2 - dist3
575 hsvl(k) = hsvl(k) - 3.0d0*dist5*tz**2 + dist3
580 hsvl(k) = hsvl(k) + 3.0d0*dist5*tx*ty
582 hsvl(k) = hsvl(k) - 3.0d0*dist5*tx*ty
584 hsvl(k) = hsvl(k) - 3.0d0*dist5*tx*ty
586 hsvl(k) = hsvl(k) + 3.0d0*dist5*tx*ty
588 hsvl(k) = hsvl(k) + 3.0d0*dist5*tx*tz
590 hsvl(k) = hsvl(k) - 3.0d0*dist5*tx*tz
592 hsvl(k) = hsvl(k) - 3.0d0*dist5*tx*tz
594 hsvl(k) = hsvl(k) + 3.0d0*dist5*tx*tz
596 hsvl(k) = hsvl(k) + 3.0d0*dist5*ty*tz
598 hsvl(k) = hsvl(k) - 3.0d0*dist5*ty*tz
600 hsvl(k) = hsvl(k) - 3.0d0*dist5*ty*tz
602 hsvl(k) = hsvl(k) + 3.0d0*dist5*ty*tz
611 Integer function pos(i,j)
612 Integer,
Intent(in) :: i, j
613 pos = 1+(i-1)*(2*numvar+2-i)/2 + (j-i)
Main program. A simple setup and call of CONOPT.
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
integer function std_status(modsta, solsta, iter, objval, usrmem)
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
integer function elec_2dlagrval(x, u, hsrw, hscl, hsvl, nodrv, numvar, numcon, numhess, usrmem)
Compute the Lagrangian of the Hessian.
integer function elec_2dlagrsize(nodrv, numvar, numcon, numhess, maxhess, usrmem)
integer function pos(i, j)
integer function elec_2dlagrstr(hsrw, hscl, nodrv, numvar, numcon, numhess, usrmem)
Specify the structure of the Lagrangian of the Hessian.
integer function elec_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
integer function elec_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
integer(c_int) function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
integer(c_int) function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
integer(c_int) function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
integer(c_int) function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
integer(c_int) function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
integer(c_int) function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
integer(c_int) function coidef_2dlagrstr(cntvect, coi_2dlagrstr)
define callback routine for providing the structure of the second derivatives of the Lagrangian.
integer(c_int) function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
integer(c_int) function coidef_2dlagrval(cntvect, coi_2dlagrval)
define callback routine for computing the values of the second derivatives of the Lagrangian.
integer(c_int) function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
integer(c_int) function coidef_debug2d(cntvect, debug2d)
turn debugging of 2nd derivatives on and off.
integer(c_int) function coidef_hessfac(cntvect, hessfac)
factor for Hessian density relative to Jacobian density HessFac.
integer(c_int) function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
integer(c_int) function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
integer(c_int) function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
integer(c_int) function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
integer(c_int) function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
integer(c_int) function coidef_objcon(cntvect, objcon)
defines the Objective Constraint.
integer(c_int) function coi_create(cntvect)
initializes CONOPT and creates the control vector.
integer(c_int) function coi_free(cntvect)
frees the control vector.
integer(c_int) function coi_solve(cntvect)
method for starting the solving process of CONOPT.
float rndx()
Defines a pseudo random number between 0 and 1.
integer(c_int) function coidef_2dlagrsize(cntvect, coi_2dlagrsize)
subroutine flog(msg, code)