CONOPT
Loading...
Searching...
No Matches

Functions

 tutorial.TutModelData.buildModel (self)
 adding the variables and constraints to the model
 
 tutorial.TutModelData.tapeFunction (self, x, rowno)
 evaluates the nonlinear function and records a tape is necessary
 
 tutorial.TutModelData.initialiseAutoDiff (self)
 initialises the automatic differentiation
 
 tutorial.TutModelData.evaluateNonlinearTerm (self, x, rowno, ignerr, thread)
 
 tutorial.TutModelData.evaluateNonlinearJacobian (self, x, rowno, jacnum, ignerr, thread)
 

Detailed Description

the tutorial example using the automatic differentiation library ADOL-C.

a tutorial providing an introduction to the CONOPT API

For more information about the individual callbacks, please have a look at the source code.

Function Documentation

◆ buildModel()

tutorial.TutModelData.buildModel ( self)

adding the variables and constraints to the model

Definition at line 27 of file tutorial.py.

◆ tapeFunction()

tutorial.TutModelData.tapeFunction ( self,
x,
rowno )

evaluates the nonlinear function and records a tape is necessary

Parameters
xcurrent point to be evaluated
rownothe index of the constraint. This is also used for the trace tag.

Definition at line 56 of file tutorial.py.

◆ initialiseAutoDiff()

tutorial.TutModelData.initialiseAutoDiff ( self)

initialises the automatic differentiation

Definition at line 91 of file tutorial.py.

◆ evaluateNonlinearTerm()

tutorial.TutModelData.evaluateNonlinearTerm ( self,
x,
rowno,
ignerr,
thread )

Definition at line 104 of file tutorial.py.

◆ evaluateNonlinearJacobian()

tutorial.TutModelData.evaluateNonlinearJacobian ( self,
x,
rowno,
jacnum,
ignerr,
thread )

Definition at line 117 of file tutorial.py.