CONOPT
|
Functions | |
tutorial.TutModelData.buildModel (self) | |
adding the variables and constraints to the model | |
tutorial.TutModelData.tapeFunction (self, x, rowno) | |
evaluates the nonlinear function and records a tape is necessary | |
tutorial.TutModelData.initialiseAutoDiff (self) | |
initialises the automatic differentiation | |
tutorial.TutModelData.evaluateNonlinearTerm (self, x, rowno, ignerr, thread) | |
tutorial.TutModelData.evaluateNonlinearJacobian (self, x, rowno, jacnum, ignerr, thread) | |
the tutorial example using the automatic differentiation library ADOL-C.
a tutorial providing an introduction to the CONOPT API
For more information about the individual callbacks, please have a look at the source code.
tutorial.TutModelData.buildModel | ( | self | ) |
adding the variables and constraints to the model
Definition at line 27 of file tutorial.py.
tutorial.TutModelData.tapeFunction | ( | self, | |
x, | |||
rowno ) |
evaluates the nonlinear function and records a tape is necessary
x | current point to be evaluated |
rowno | the index of the constraint. This is also used for the trace tag. |
Definition at line 56 of file tutorial.py.
tutorial.TutModelData.initialiseAutoDiff | ( | self | ) |
initialises the automatic differentiation
Definition at line 91 of file tutorial.py.
tutorial.TutModelData.evaluateNonlinearTerm | ( | self, | |
x, | |||
rowno, | |||
ignerr, | |||
thread ) |
Definition at line 104 of file tutorial.py.
tutorial.TutModelData.evaluateNonlinearJacobian | ( | self, | |
x, | |||
rowno, | |||
jacnum, | |||
ignerr, | |||
thread ) |
Definition at line 117 of file tutorial.py.