|
CONOPT
|
Functions | |
| tutorial2.TutModelData.buildModel (self) | |
| adding the variables and constraints to the model | |
| tutorial2.TutModelData.tapeFunction (self, x, rowno) | |
| evaluates the nonlinear function and records a tape is necessary | |
| tutorial2.TutModelData.initialiseAutoDiff (self) | |
| initialises the automatic differentiation | |
| tutorial2.TutModelData.evaluateNonlinearTerm (self, x, rowno, ignerr, thread) | |
| tutorial2.TutModelData.evaluateNonlinearJacobian (self, x, rowno, jacnum, ignerr, thread) | |
| tutorial2.TutModelData.evaluateSDLagrangian (self, x, u, hessianrow, hessiancol) | |
this extends the tutorial by including the computation of the Lagrangian of the Hessian.
| tutorial2.TutModelData.buildModel | ( | self | ) |
adding the variables and constraints to the model
Definition at line 26 of file tutorial2.py.
| tutorial2.TutModelData.tapeFunction | ( | self, | |
| x, | |||
| rowno ) |
evaluates the nonlinear function and records a tape is necessary
| x | current point to be evaluated |
| rowno | the index of the constraint. This is also used for the trace tag. |
Definition at line 58 of file tutorial2.py.
| tutorial2.TutModelData.initialiseAutoDiff | ( | self | ) |
initialises the automatic differentiation
Definition at line 91 of file tutorial2.py.
| tutorial2.TutModelData.evaluateNonlinearTerm | ( | self, | |
| x, | |||
| rowno, | |||
| ignerr, | |||
| thread ) |
Definition at line 104 of file tutorial2.py.
| tutorial2.TutModelData.evaluateNonlinearJacobian | ( | self, | |
| x, | |||
| rowno, | |||
| jacnum, | |||
| ignerr, | |||
| thread ) |
Definition at line 117 of file tutorial2.py.
| tutorial2.TutModelData.evaluateSDLagrangian | ( | self, | |
| x, | |||
| u, | |||
| hessianrow, | |||
| hessiancol ) |
Definition at line 134 of file tutorial2.py.