CONOPT
Loading...
Searching...
No Matches

Functions

 tutorial2.TutModelData.buildModel (self)
 adding the variables and constraints to the model
 
 tutorial2.TutModelData.tapeFunction (self, x, rowno)
 evaluates the nonlinear function and records a tape is necessary
 
 tutorial2.TutModelData.initialiseAutoDiff (self)
 initialises the automatic differentiation
 
 tutorial2.TutModelData.evaluateNonlinearTerm (self, x, rowno, ignerr, thread)
 
 tutorial2.TutModelData.evaluateNonlinearJacobian (self, x, rowno, jacnum, ignerr, thread)
 
 tutorial2.TutModelData.evaluateSDLagrangian (self, x, u, hessianrow, hessiancol)
 

Detailed Description

this extends the tutorial by including the computation of the Lagrangian of the Hessian.

Function Documentation

◆ buildModel()

tutorial2.TutModelData.buildModel ( self)

adding the variables and constraints to the model

Definition at line 26 of file tutorial2.py.

◆ tapeFunction()

tutorial2.TutModelData.tapeFunction ( self,
x,
rowno )

evaluates the nonlinear function and records a tape is necessary

Parameters
xcurrent point to be evaluated
rownothe index of the constraint. This is also used for the trace tag.

Definition at line 58 of file tutorial2.py.

◆ initialiseAutoDiff()

tutorial2.TutModelData.initialiseAutoDiff ( self)

initialises the automatic differentiation

Definition at line 91 of file tutorial2.py.

◆ evaluateNonlinearTerm()

tutorial2.TutModelData.evaluateNonlinearTerm ( self,
x,
rowno,
ignerr,
thread )

Definition at line 104 of file tutorial2.py.

◆ evaluateNonlinearJacobian()

tutorial2.TutModelData.evaluateNonlinearJacobian ( self,
x,
rowno,
jacnum,
ignerr,
thread )

Definition at line 117 of file tutorial2.py.

◆ evaluateSDLagrangian()

tutorial2.TutModelData.evaluateSDLagrangian ( self,
x,
u,
hessianrow,
hessiancol )

Definition at line 134 of file tutorial2.py.