32 Integer,
save :: seed = 12359
34 seed = mod(seed*1027+25,1048576)
35 rndx = float(seed)/float(1048576)
47 real*8,
Parameter :: xtarg = -1.0
48 real*8,
Parameter :: noise = 1.0
49 Real,
External :: Rndx
57 o = o + a(i,j) * xtarg + b(i,j) * xtarg**2
59 obs(i) = o + noise * rndx()
99 INTEGER :: numcallback
100 INTEGER,
Dimension(:),
Pointer :: cntvect
112 Allocate( cntvect(numcallback) )
123 coi_error = max( coi_error,
coidef_optfile( cntvect,
'leastsq10.opt' ) )
137#if defined(LICENSE_INT_1) && defined(LICENSE_INT_2) && defined(LICENSE_INT_3) && defined(LICENSE_TEXT)
138 coi_error = max( coi_error,
coidef_license( cntvect, license_int_1, license_int_2, license_int_3, license_text) )
141 If ( coi_error .ne. 0 )
THEN
143 write(*,*)
'**** Fatal Error while loading CONOPT Callback routines.'
145 call flog(
"Skipping Solve due to setup errors", 1 )
153 write(*,*)
'End of Least Square example 10. Return code=',coi_error
155 If ( coi_error /= 0 )
then
156 call flog(
"Errors encountered during solution", 1 )
158 call flog(
"Status or Solution routine was not called", 1 )
160 call flog(
"Solver and Model Status was not as expected (1,2)", 1 )
161 elseif ( abs(
obj - 19.44434311d0 ) > 1.d-7 )
then
162 call flog(
"Incorrect objective returned", 1 )
165 if ( coi_free(cntvect) /= 0 )
call flog(
"Error while freeing control vector",1)
167 call flog(
"Successful Solve", 0 )
179 colsta, rowno, value, nlflag, n, m, nz, &
186 integer,
intent (in) :: n
187 integer,
intent (in) :: m
188 integer,
intent (in) :: nz
189 real*8,
intent (in out),
dimension(n) :: lower
190 real*8,
intent (in out),
dimension(n) :: curr
191 real*8,
intent (in out),
dimension(n) :: upper
192 integer,
intent (in out),
dimension(n) :: vsta
194 integer,
intent (out),
dimension(m) ::
type
195 integer,
intent (in out),
dimension(m) :: esta
197 real*8,
intent (in out),
dimension(m) :: rhs
198 integer,
intent (in out),
dimension(n+1) :: colsta
199 integer,
intent (out),
dimension(nz) :: rowno
200 integer,
intent (in out),
dimension(nz) :: nlflag
201 real*8,
intent (in out),
dimension(nz) ::
value
286Integer Function lsq_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
287 n, nz, thread, usrmem )
293 integer,
intent (in) :: n
294 integer,
intent (in) :: rowno
295 integer,
intent (in) :: nz
296 real*8,
intent (in),
dimension(n) :: x
297 real*8,
intent (in out) :: g
298 real*8,
intent (in out),
dimension(n) :: jac
299 integer,
intent (in),
dimension(nz) :: jcnm
301 integer,
intent (in) :: mode
303 integer,
intent (in) :: ignerr
305 integer,
intent (in out) :: errcnt
307 integer,
intent (in) :: thread
315 if ( rowno .eq.
nobs+1 )
then
319 if ( mode .eq. 1 .or. mode .eq. 3 )
then
329 if ( mode .eq. 2 .or. mode .eq. 3 )
then
341 if ( mode .eq. 1 .or. mode .eq. 3 )
then
344 s = s + a(rowno,j)*x(j) + b(rowno,j)*x(j)**2
351 if ( mode .eq. 2 .or. mode .eq. 3 )
then
353 jac(j) = a(rowno,j) + 2.d0*b(rowno,j)*x(j)
365Integer Function lsq_2ddir( X, DX, D2G, ROWNO, JCNM, NODRV, N, NJ, THREAD, USRMEM )
371 INTEGER,
Intent(IN) :: rowno, n,
nj, thread
372 INTEGER,
Intent(IN OUT) :: nodrv
373 INTEGER,
Dimension(NJ),
Intent(IN) :: jcnm
374 real*8,
Dimension(N),
Intent(IN) :: x
375 real*8,
Dimension(N),
Intent(IN) :: dx
376 real*8,
Dimension(N),
Intent(OUT) :: d2g
377 real*8,
Intent(IN OUT) :: usrmem(*)
380 if ( rowno .eq.
nobs+1 )
then
414Integer Function lsq_2ddirini( X, DX, RowList, ListSize, NumThread, NewPT, NODRV, NumVar, USRMEM )
420 INTEGER,
Intent(IN) :: listsize, numthread, newpt, numvar
421 Integer,
Intent(IN OUT) :: nodrv
422 real*8,
Dimension(NumVar),
Intent(IN) :: x
423 real*8,
Dimension(NumVar),
Intent(IN) :: dx
424 Integer,
Dimension(ListSize),
Intent(IN) :: rowlist
425 real*8,
Intent(IN OUT) :: usrmem(*)
434 write(10,*)
'Inside 2DDirIni: NewPt=',newpt
437 c(i,j) = 2.d0*b(i,j)*dx(j)
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
integer function std_status(modsta, solsta, iter, objval, usrmem)
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
integer function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
integer function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
integer function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
integer function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
integer function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
integer function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
integer function coidef_2ddirini(cntvect, coi_2ddirini)
define callback routine for initializing the computation of second derivatives for a constraint in a ...
integer function coidef_2ddir(cntvect, coi_2ddir)
define callback routine for computing the second derivative for a constraint in a direction.
integer function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
integer function coidef_debugfv(cntvect, debugfv)
turn Debugging of FDEval on and off.
integer function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
integer function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
integer function coidef_objcon(cntvect, objcon)
defines the Objective Constraint.
integer function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
integer function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
integer function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
integer function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
integer function coidef_size()
returns the size the Control Vector must have, measured in standard Integer units.
integer function coidef_inifort(cntvect)
initialisation method for Fortran applications.
integer function coi_solve(cntvect)
method for starting the solving process of CONOPT.
integer function lsq_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
integer function lsq_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
integer function lsq_2ddirini(x, dx, rowlist, listsize, numthread, newpt, nodrv, numvar, usrmem)
Computes the second derivative of a constraint in a direction.
integer function lsq_2ddir(x, dx, d2g, rowno, jcnm, nodrv, n, nj, thread, usrmem)
Computes the second derivative of a constraint in a direction.
void defdata()
Defines the data for the problem.
float rndx()
Defines a pseudo random number between 0 and 1.
program leastsquare
Main program. A simple setup and call of CONOPT.
subroutine flog(msg, code)