30 Integer,
save :: seed = 12359
32 seed = mod(seed*1027+25,1048576)
33 rndx = float(seed)/float(1048576)
45 real*8,
Parameter :: xtarg = -1.0
46 real*8,
Parameter :: noise = 1.0
47 Real,
External :: Rndx
55 o = o + a(i,j) * xtarg + b(i,j) * xtarg**2
57 obs(i) = o + noise * rndx()
99 INTEGER :: numcallback
100 INTEGER,
Dimension(:),
Pointer :: cntvect
112 Allocate( cntvect(numcallback) )
124 coi_error = max( coi_error,
coidef_optfile( cntvect,
'leastsq4.opt' ) )
140#if defined(LICENSE_INT_1) && defined(LICENSE_INT_2) && defined(LICENSE_INT_3) && defined(LICENSE_TEXT)
141 coi_error = max( coi_error,
coidef_license( cntvect, license_int_1, license_int_2, license_int_3, license_text) )
144 If ( coi_error .ne. 0 )
THEN
146 write(*,*)
'**** Fatal Error while loading CONOPT Callback routines.'
148 call flog(
"Skipping Solve due to setup errors", 1 )
156 write(*,*)
'End of Least Square example 4. Return code=',coi_error
158 If ( coi_error /= 0 )
then
159 call flog(
"Errors encountered during solution", 1 )
161 call flog(
"Status or Solution routine was not called", 1 )
163 call flog(
"Solver or Model status was not as expected (1,2)", 1 )
164 elseif ( abs(
obj - 19.44434311d0 ) > 1.d-7 )
then
165 call flog(
"Incorrect objective returned", 1 )
168 if ( coi_free(cntvect) /= 0 )
call flog(
"Error while freeing control vector",1)
170 call flog(
"Successful Solve", 0 )
182 colsta, rowno, value, nlflag, n, m, nz, &
189 integer,
intent (in) :: n
190 integer,
intent (in) :: m
191 integer,
intent (in) :: nz
192 real*8,
intent (in out),
dimension(n) :: lower
193 real*8,
intent (in out),
dimension(n) :: curr
194 real*8,
intent (in out),
dimension(n) :: upper
195 integer,
intent (in out),
dimension(n) :: vsta
197 integer,
intent (out),
dimension(m) ::
type
198 integer,
intent (in out),
dimension(m) :: esta
200 real*8,
intent (in out),
dimension(m) :: rhs
201 integer,
intent (in out),
dimension(n+1) :: colsta
202 integer,
intent (out),
dimension(nz) :: rowno
203 integer,
intent (in out),
dimension(nz) :: nlflag
204 real*8,
intent (in out),
dimension(nz) ::
value
289Integer Function lsq_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
290 n, nz, thread, usrmem )
296 integer,
intent (in) :: n
297 integer,
intent (in) :: rowno
298 integer,
intent (in) :: nz
299 real*8,
intent (in),
dimension(n) :: x
300 real*8,
intent (in out) :: g
301 real*8,
intent (in out),
dimension(n) :: jac
302 integer,
intent (in),
dimension(nz) :: jcnm
304 integer,
intent (in) :: mode
306 integer,
intent (in) :: ignerr
308 integer,
intent (in out) :: errcnt
310 integer,
intent (in) :: thread
319 if ( rowno .eq.
nobs+1 )
then
323 if ( mode .eq. 1 .or. mode .eq. 3 )
then
333 if ( mode .eq. 2 .or. mode .eq. 3 )
then
345 if ( mode .eq. 1 .or. mode .eq. 3 )
then
348 s = s + a(rowno,j)*x(j) + b(rowno,j)*x(j)**2
355 if ( mode .eq. 2 .or. mode .eq. 3 )
then
357 jac(j) = a(rowno,j) + 2.d0*b(rowno,j)*x(j)
376 Integer,
Intent (IN) :: n, m, nhess
377 Integer,
Intent (IN OUT) :: nodrv
378 Integer,
Dimension(Nhess),
Intent (Out) :: hsrw, hscl
379 real*8,
Intent(IN OUT) :: usrmem(*)
409Integer Function lsq_2dlagrval( X, U, HSRW, HSCL, HSVL, NODRV, N, M, NHESS, UsrMem )
416 Integer,
Intent (IN) :: n, m, nhess
417 Integer,
Intent (IN OUT) :: nodrv
418 real*8,
Dimension(N),
Intent (IN) :: x
419 real*8,
Dimension(M),
Intent (IN) :: u
420 Integer,
Dimension(Nhess),
Intent (In) :: hsrw, hscl
421 real*8,
Dimension(NHess),
Intent (Out) :: hsvl
422 real*8,
Intent(IN OUT) :: usrmem(*)
453Integer Function lsq_option( ncall, rval, ival, lval, usrmem, name )
457 integer ncall, ival, lval
458 character(Len=*) :: name
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
integer function std_status(modsta, solsta, iter, objval, usrmem)
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
integer function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
integer function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
integer function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
integer function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
integer function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
integer function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
integer function coidef_2dlagrstr(cntvect, coi_2dlagrstr)
define callback routine for providing the structure of the second derivatives of the Lagrangian.
integer function coidef_option(cntvect, coi_option)
define callback routine for defining runtime options.
integer function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
integer function coidef_2dlagrval(cntvect, coi_2dlagrval)
define callback routine for computing the values of the second derivatives of the Lagrangian.
integer function coidef_debugfv(cntvect, debugfv)
turn Debugging of FDEval on and off.
integer function coidef_debug2d(cntvect, debug2d)
turn debugging of 2nd derivatives on and off.
integer function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
integer function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
integer function coidef_objcon(cntvect, objcon)
defines the Objective Constraint.
integer function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
integer function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
integer function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
integer function coidef_numhess(cntvect, numhess)
defines the Number of Hessian Nonzeros.
integer function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
integer function coidef_size()
returns the size the Control Vector must have, measured in standard Integer units.
integer function coidef_inifort(cntvect)
initialisation method for Fortran applications.
integer function coi_solve(cntvect)
method for starting the solving process of CONOPT.
integer function lsq_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
integer function lsq_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
integer function lsq_2dlagrstr(hsrw, hscl, nodrv, n, m, nhess, usrmem)
Specify the structure of the Lagrangian of the Hessian.
integer function lsq_2dlagrval(x, u, hsrw, hscl, hsvl, nodrv, n, m, nhess, usrmem)
Compute the Lagrangian of the Hessian.
integer function lsq_option(ncall, rval, ival, lval, usrmem, name)
Sets runtime options.
void defdata()
Defines the data for the problem.
float rndx()
Defines a pseudo random number between 0 and 1.
program leastsquare
Main program. A simple setup and call of CONOPT.
subroutine flog(msg, code)