39 Integer,
save :: seed = 12359
41 seed = mod(seed*1027+25,1048576)
42 rndx = float(seed)/float(1048576)
54 real*8,
Parameter :: xtarg = -1.0
55 real*8,
Parameter :: noise = 1.0
56 Real,
External :: Rndx
65 o = o + a(i,k,j) * xtarg + b(i,k,j) * xtarg**2
67 obs(i,k) = o + noise * rndx()
104 INTEGER :: numcallback
105 INTEGER,
Dimension(:),
Pointer :: cntvect
117 Allocate( cntvect(numcallback) )
128 coi_error = max( coi_error,
coidef_optfile( cntvect,
'Minimax06.opt' ) )
140#if defined(LICENSE_INT_1) && defined(LICENSE_INT_2) && defined(LICENSE_INT_3) && defined(LICENSE_TEXT)
141 coi_error = max( coi_error,
coidef_license( cntvect, license_int_1, license_int_2, license_int_3, license_text) )
144 If ( coi_error .ne. 0 )
THEN
146 write(*,*)
'**** Fatal Error while loading CONOPT Callback routines.'
148 call flog(
"Skipping Solve due to setup errors", 1 )
160 write(*,*)
'End of Minimax06 example 1. Return code=',coi_error
162 If ( coi_error /= 0 )
then
163 call flog(
"Errors encountered during solution", 1 )
165 call flog(
"Status or Solution routine was not called", 1 )
166 elseif ( .not. (
sstat == 1 .and.
mstat == 2 ) )
then
167 call flog(
"Solver or Model status was not as expected (1,2)", 1 )
174 if ( coi_free(cntvect) /= 0 )
call flog(
"Error while freeing control vector",1)
176 call flog(
"Successful Solve", 0 )
188 colsta, rowno, value, nlflag, n, m, nz, &
195 integer,
intent (in) :: n
196 integer,
intent (in) :: m
197 integer,
intent (in) :: nz
198 real*8,
intent (in out),
dimension(n) :: lower
199 real*8,
intent (in out),
dimension(n) :: curr
200 real*8,
intent (in out),
dimension(n) :: upper
201 integer,
intent (in out),
dimension(n) :: vsta
203 integer,
intent (out),
dimension(m) ::
type
204 integer,
intent (in out),
dimension(m) :: esta
206 real*8,
intent (in out),
dimension(m) :: rhs
207 integer,
intent (in out),
dimension(n+1) :: colsta
208 integer,
intent (out),
dimension(nz) :: rowno
209 integer,
intent (in out),
dimension(nz) :: nlflag
210 real*8,
intent (in out),
dimension(nz) ::
value
213 Integer :: i, j, k, l, nzc
267 do i = 3*
nobs*dimk+1, 3*
nobs*dimk+dimk
274 type(3*
nobs*dimk+dimk+1) = 3
304 rowno(nzc) = k+dimk*(i-1)
308 rowno(nzc) = 3*
nobs*dimk+k
316 colsta(
dimx*dimk+k+dimk*(i-1)) = nzc
317 rowno(nzc) = k+dimk*(i-1)
321 rowno(nzc) =
nobs*dimk+k+dimk*(i-1)
325 rowno(nzc) = 2*
nobs*dimk+k+dimk*(i-1)
334 rowno(nzc) =
nobs*dimk++k+dimk*(i-1)
338 rowno(nzc) = 2*
nobs*dimk+k+dimk*(i-1)
343 rowno(nzc) = 3*
nobs*dimk+dimk+1
348 colsta(
dimx*dimk+
nobs*dimk+dimk+1) = nzc
361Integer Function mm_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
362 n, nzc, thread, usrmem )
368 integer,
intent (in) :: n
369 integer,
intent (in) :: rowno
370 integer,
intent (in) :: nzc
371 real*8,
intent (in),
dimension(n) :: x
372 real*8,
intent (in out) :: g
373 real*8,
intent (in out),
dimension(n) :: jac
374 integer,
intent (in),
dimension(nzc) :: jcnm
376 integer,
intent (in) :: mode
378 integer,
intent (in) :: ignerr
380 integer,
intent (in out) :: errcnt
382 integer,
intent (in) :: thread
389 if ( rowno .le.
nobs*dimk )
then
397 i = (dimk+rowno-1)/dimk
399 if ( mode .eq. 1 .or. mode .eq. 3 )
then
403 s = s + a(i,k,j)*x(l) + b(i,k,j)*x(l)**2
410 if ( mode .eq. 2 .or. mode .eq. 3 )
then
413 jac(l) = a(i,k,j) + 2.d0*b(i,k,j)*x(l)
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
integer function std_status(modsta, solsta, iter, objval, usrmem)
subroutine checkdual(case, minmax)
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
integer function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
integer function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
integer function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
integer function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
integer function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
integer function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
integer function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
integer function coidef_debugfv(cntvect, debugfv)
turn Debugging of FDEval on and off.
integer function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
integer function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
integer function coidef_objcon(cntvect, objcon)
defines the Objective Constraint.
integer function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
integer function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
integer function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
integer function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
integer function coidef_size()
returns the size the Control Vector must have, measured in standard Integer units.
integer function coidef_inifort(cntvect)
initialisation method for Fortran applications.
integer function coi_solve(cntvect)
method for starting the solving process of CONOPT.
void defdata()
Defines the data for the problem.
float rndx()
Defines a pseudo random number between 0 and 1.
program minimax06
Main program. A simple setup and call of CONOPT.
integer function mm_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
integer function mm_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
integer, parameter minimize
subroutine flog(msg, code)