CONOPT
Loading...
Searching...
No Matches
mono04.f90
Go to the documentation of this file.
1!> @file mono04.f90
2!! @ingroup FORT1THREAD_EXAMPLES
3!!
4!!
5!! Monotone function to bound conversion example 04
6!!
7!! This is a CONOPT implementation of the GAMS model:
8!!
9!! @verbatim
10!! variable x1
11!! equation e1;
12!!
13!! e1 .. log(x1) =L= 2;
14!!
15!! x1.lo = 0.01;
16!! x1.up = 5;
17!! model mono / all /;
18!! solve mono using nlp maximizing x1;
19!! @endverbatim
20!!
21!!
22!!
23!! For more information about the individual callbacks, please have a look at the source code.
24
25#if defined(_WIN32) && !defined(_WIN64)
26#define dec_directives_win32
27#endif
28
29!> Main program. A simple setup and call of CONOPT
30!!
31Program mono04
32
34 Use conopt
35 implicit None
36!
37! Declare the user callback routines as Integer, External:
38!
39 Integer, External :: mono_readmatrix ! Mandatory Matrix definition routine defined below
40 Integer, External :: mono_fdeval ! Function and Derivative evaluation routine
41 ! needed a nonlinear model.
42 Integer, External :: mono_fdinterval ! Function and Derivative evaluation routine
43 ! needed a nonlinear model.
44 Integer, External :: std_status ! Standard callback for displaying solution status
45 Integer, External :: std_solution ! Standard callback for displaying solution values
46 Integer, External :: std_message ! Standard callback for managing messages
47 Integer, External :: std_errmsg ! Standard callback for managing error messages
48 Integer, External :: std_triord ! Standard callback for Monongular order
49#ifdef dec_directives_win32
50!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Mono_ReadMatrix
51!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Mono_FDEval
52!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Mono_FDInterval
53!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Status
54!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Solution
55!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Message
56!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_ErrMsg
57!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_TriOrd
58#endif
59!
60! Control vector
61!
62 INTEGER, Dimension(:), Pointer :: cntvect
63 INTEGER :: coi_error
64
65 call startup
66!
67! Create and initialize a Control Vector
68!
69 coi_error = coi_create( cntvect )
70!
71! Tell CONOPT about the size of the model by populating the Control Vector:
72!
73 coi_error = max( coi_error, coidef_numvar( cntvect, 1 ) ) ! # variables
74 coi_error = max( coi_error, coidef_numcon( cntvect, 1 ) ) ! # constraints
75 coi_error = max( coi_error, coidef_numnz( cntvect, 1 ) ) ! # nonzeros in the Jacobian
76 coi_error = max( coi_error, coidef_numnlnz( cntvect, 1 ) ) ! # of which are nonlinear
77 coi_error = max( coi_error, coidef_optdir( cntvect, +1 ) ) ! Maximize
78 coi_error = max( coi_error, coidef_objvar( cntvect, 1 ) ) ! Objective is variable 3
79 coi_error = max( coi_error, coidef_optfile( cntvect, 'Mono04.opt' ) )
80!
81! Tell CONOPT about the callback routines:
82!
83 coi_error = max( coi_error, coidef_readmatrix( cntvect, mono_readmatrix ) )
84 coi_error = max( coi_error, coidef_fdeval( cntvect, mono_fdeval ) )
85 coi_error = max( coi_error, coidef_fdinterval( cntvect, mono_fdinterval ) )
86 coi_error = max( coi_error, coidef_status( cntvect, std_status ) )
87 coi_error = max( coi_error, coidef_solution( cntvect, std_solution ) )
88 coi_error = max( coi_error, coidef_message( cntvect, std_message ) )
89 coi_error = max( coi_error, coidef_errmsg( cntvect, std_errmsg ) )
90 coi_error = max( coi_error, coidef_triord( cntvect, std_triord ) )
91
92#if defined(CONOPT_LICENSE_INT_1) && defined(CONOPT_LICENSE_INT_2) && defined(CONOPT_LICENSE_INT_3) && defined(CONOPT_LICENSE_TEXT)
93 coi_error = max( coi_error, coidef_license( cntvect, conopt_license_int_1, conopt_license_int_2, conopt_license_int_3, conopt_license_text) )
94#endif
95
96 If ( coi_error .ne. 0 ) THEN
97 write(*,*)
98 write(*,*) '**** Fatal Error while loading CONOPT Callback routines.'
99 write(*,*)
100 call flog( "Skipping Solve due to setup errors", 1 )
101 ENDIF
102!
103! Save the solution so we can check the duals:
104!
105 do_allocate = .true.
106!
107! Start CONOPT:
108!
109 coi_error = coi_solve( cntvect )
110
111 write(*,*)
112 write(*,*) 'End of Mono04 example. Return code=',coi_error
113
114 If ( coi_error /= 0 ) then
115 call flog( "Errors encountered during solution", 1 )
116 elseif ( stacalls == 0 .or. solcalls == 0 ) then
117 call flog( "Status or Solution routine was not called", 1 )
118 elseif ( sstat /= 1 .or. mstat /= 1 ) then
119 call flog( "Solver and Model Status was not as expected (1,1)", 1 )
120 elseif ( abs( obj-5.0d0 ) > 0.000001d0 ) then
121 call flog( "Incorrect objective returned", 1 )
122 Else
123 Call checkdual( 'Mono04', maximize )
124 endif
125
126 if ( coi_free(cntvect) /= 0 ) call flog( "Error while freeing control vector",1)
127
128 call flog( "Successful Solve", 0 )
129
130End Program mono04
131!
132! ============================================================================
133! Define information about the model:
134!
135
136!> Define information about the model
137!!
138!! @include{doc} readMatrix_params.dox
139Integer Function mono_readmatrix( lower, curr, upper, vsta, type, rhs, esta, &
140 colsta, rowno, value, nlflag, n, m, nz, &
141 usrmem )
142#ifdef dec_directives_win32
143!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Mono_ReadMatrix
144#endif
145 implicit none
146 integer, intent (in) :: n ! number of variables
147 integer, intent (in) :: m ! number of constraints
148 integer, intent (in) :: nz ! number of nonzeros
149 real*8, intent (in out), dimension(n) :: lower ! vector of lower bounds
150 real*8, intent (in out), dimension(n) :: curr ! vector of initial values
151 real*8, intent (in out), dimension(n) :: upper ! vector of upper bounds
152 integer, intent (in out), dimension(n) :: vsta ! vector of initial variable status
153 ! (not defined here)
154 integer, intent (out), dimension(m) :: type ! vector of equation types
155 integer, intent (in out), dimension(m) :: esta ! vector of initial equation status
156 ! (not defined here)
157 real*8, intent (in out), dimension(m) :: rhs ! vector of right hand sides
158 integer, intent (in out), dimension(n+1) :: colsta ! vector with start of column indices
159 integer, intent (out), dimension(nz) :: rowno ! vector of row numbers
160 integer, intent (in out), dimension(nz) :: nlflag ! vector of nonlinearity flags
161 real*8, intent (in out), dimension(nz) :: value ! vector of matrix values
162 real*8 usrmem(*) ! optional user memory
163!
164! Information about Variables:
165! Default: Lower = -Inf, Curr = 0, and Upper = +inf.
166! Default: the status information in Vsta is not used.
167!
168! The model uses defaults
169!
170! Information about Constraints:
171! Default: Rhs = 0
172! Default: the status information in Esta and the function
173! value in FV are not used.
174! Default: Type: There is no default.
175! 0 = Equality,
176! 1 = Greater than or equal,
177! 2 = Less than or equal,
178! 3 = Non binding.
179!
180! Constraint 1: e1
181! Rhs = 10.0 and type Less than or Equal
182!
183 rhs(1) = 2.0d0
184 type(1) = 2
185!
186 lower(1) = 0.01d0
187 curr(1) = 0.01d0
188 upper(1) = 5.00d0
189!
190! Information about the Jacobian. CONOPT expects a columnwise
191! representation in Rowno, Value, Nlflag and Colsta.
192!
193! Colsta = Start of column indices (No Defaults):
194! Rowno = Row indices
195! Value = Value of derivative (by default only linear
196! derivatives are used)
197! Nlflag = 0 for linear and 1 for nonlinear derivative
198! (not needed for completely linear models)
199!
200! Indices
201! x(1)
202! 1: 1
203!
204 colsta(1) = 1
205 colsta(2) = 2
206 rowno(1) = 1
207!
208! Nonlinearity Structure: L = 0 are linear and NL = 1 are nonlinear
209! x(1)
210! 1: NL
211!
212 nlflag(1) = 1
213!
214! Value (Linear only)
215! x(1)
216! 1: NL
217!
218 mono_readmatrix = 0 ! Return value means OK
219
220end Function mono_readmatrix
221!
222!==========================================================================
223! Compute nonlinear terms and non-constant Jacobian elements
224!
225
226!> Compute nonlinear terms and non-constant Jacobian elements
227!!
228!! @include{doc} fdeval_params.dox
229Integer Function mono_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
230 n, nz, thread, usrmem )
231#ifdef dec_directives_win32
232!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Mono_FDEval
233#endif
234 implicit none
235 integer, intent (in) :: n ! number of variables
236 integer, intent (in) :: rowno ! number of the row to be evaluated
237 integer, intent (in) :: nz ! number of nonzeros in this row
238 real*8, intent (in), dimension(n) :: x ! vector of current solution values
239 real*8, intent (in out) :: g ! constraint value
240 real*8, intent (in out), dimension(n) :: jac ! vector of derivatives for current constraint
241 integer, intent (in), dimension(nz) :: jcnm ! list of variables that appear nonlinearly
242 ! in this row. Ffor information only.
243 integer, intent (in) :: mode ! evaluation mode: 1 = function value
244 ! 2 = derivatives, 3 = both
245 integer, intent (in) :: ignerr ! if 1 then errors can be ignored as long
246 ! as errcnt is incremented
247 integer, intent (in out) :: errcnt ! error counter to be incremented in case
248 ! of function evaluation errors.
249 integer, intent (in) :: thread
250 real*8 usrmem(*) ! optional user memory
251!
252! Row 1: e1
253!
254 if ( rowno .eq. 1 ) then
255!
256! Mode = 1 or 3. G = log(x1)
257!
258 if ( mode .eq. 1 .or. mode .eq. 3 ) then
259 g = log(x(1))
260 endif
261!
262! Mode = 2 or 3: Derivative values:
263!
264 if ( mode .eq. 2 .or. mode .eq. 3 ) then
265 jac(1) = 1.d0/x(1)
266 endif
267 mono_fdeval = 0
268 else
269!
270! There are no other rows:
271!
272 mono_fdeval = 1
273 endif
274
275end Function mono_fdeval
276
277
278!> Evaluating nonlinear functions and derivatives on an interval. Used in preprocessing
279!!
280!! @include{doc} fdinterval_params.dox
281Integer Function mono_fdinterval( XMIN, XMAX, GMIN, GMAX, &
282 JMIN, JMAX, ROWNO, JCNM, &
283 MODE, PINF, N, NJ, USRMEM )
284#ifdef dec_directives_win32
285!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Mono_FDInterval
286#endif
287 Implicit None
288 INTEGER, Intent(IN) :: rowno, mode, n, nj
289 INTEGER, Dimension(NJ), Intent(IN) :: jcnm
290 real*8, Dimension(N), Intent(IN) :: xmin, xmax
291 real*8, Intent(IN OUT) :: gmin, gmax
292 real*8, Dimension(N), Intent(IN OUT) :: jmin, jmax
293 real*8, Intent(IN) :: pinf
294 real*8, Intent(IN OUT) :: usrmem(*)
295
296!
297! Row 1: e1
298!
299 write(10,*) 'Enter Mono_FDInterval. Row=',rowno,' Mode=',mode
300 write(10,*) 'Xmin=',xmin
301 write(10,*) 'Xmax=',xmax
302 if ( rowno .eq. 1 ) then
303!
304! Mode = 1 or 3. G = log(x1)
305!
306 if ( mode .eq. 1 .or. mode .eq. 3 ) then
307 If ( xmin(1) <= 0.0d0 ) then
308 gmin = -pinf
309 else
310 gmin = log(xmin(1))
311 endif
312 If ( xmax(1) <= 0.0d0 ) then
313 gmax = -pinf
314 else
315 gmax = log(xmax(1))
316 endif
317 write(10,*) 'Gmin=',gmin,' Gmax=',gmax
318 endif
319!
320! Mode = 2 or 3: Derivative values:
321!
322 if ( mode .eq. 2 .or. mode .eq. 3 ) then
323 If ( xmin(1) <= 0.0d0 ) then
324 jmin(1) = -pinf
325 jmax(1) = +pinf
326 else
327 jmin(1) = 1.0d0/xmax(1)
328 jmax(1) = 1.0d0/xmin(1)
329 endif
330 write(10,*) 'Jmin=',jmin
331 write(10,*) 'Jmax=',jmax
332 endif
334 else
335!
336! There are no other rows:
337!
339 endif
340
341end Function mono_fdinterval
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
Definition comdecl.f90:132
integer function std_status(modsta, solsta, iter, objval, usrmem)
Definition comdecl.f90:88
subroutine checkdual(case, minmax)
Definition comdecl.f90:394
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
Definition comdecl.f90:205
integer function std_triord(mode, type, status, irow, icol, inf, value, resid, usrmem)
Definition comdecl.f90:289
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
Definition comdecl.f90:248
integer(c_int) function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
Definition conopt.f90:1265
integer(c_int) function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
Definition conopt.f90:1238
integer(c_int) function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
Definition conopt.f90:1212
integer(c_int) function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
Definition conopt.f90:1111
integer(c_int) function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
Definition conopt.f90:1291
integer(c_int) function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
Definition conopt.f90:1135
integer(c_int) function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
Definition conopt.f90:928
integer(c_int) function coidef_fdinterval(cntvect, coi_fdinterval)
define callback routine for performing function and derivative evaluations on intervals.
Definition conopt.f90:1396
integer(c_int) function coidef_triord(cntvect, coi_triord)
define callback routine for providing the triangular order information.
Definition conopt.f90:1371
integer(c_int) function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
Definition conopt.f90:293
integer(c_int) function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
Definition conopt.f90:97
integer(c_int) function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
Definition conopt.f90:121
integer(c_int) function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
Definition conopt.f90:167
integer(c_int) function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
Definition conopt.f90:213
integer(c_int) function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
Definition conopt.f90:144
integer(c_int) function coidef_objvar(cntvect, objvar)
defines the Objective Variable.
Definition conopt.f90:257
integer(c_int) function coi_create(cntvect)
initializes CONOPT and creates the control vector.
Definition conopt.f90:1726
integer(c_int) function coi_free(cntvect)
frees the control vector.
Definition conopt.f90:1749
integer(c_int) function coi_solve(cntvect)
method for starting the solving process of CONOPT.
Definition conopt.f90:1625
integer function mono_fdinterval(xmin, xmax, gmin, gmax, jmin, jmax, rowno, jcnm, mode, pinf, n, nj, usrmem)
Evaluating nonlinear functions and derivatives on an interval. Used in preprocessing.
Definition mono01.f90:265
integer function mono_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
Definition mono01.f90:130
integer function mono_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
Definition mono01.f90:215
program mono04
Main program. A simple setup and call of CONOPT.
Definition mono04.f90:33
#define nj
Definition mp_trans.c:46
real *8 obj
Definition comdecl.f90:16
integer solcalls
Definition comdecl.f90:15
integer sstat
Definition comdecl.f90:18
integer stacalls
Definition comdecl.f90:14
subroutine flog(msg, code)
Definition comdecl.f90:62
logical do_allocate
Definition comdecl.f90:27
integer, parameter maximize
Definition comdecl.f90:31
integer mstat
Definition comdecl.f90:17
subroutine startup
Definition comdecl.f90:41