24 Integer,
parameter ::
nobs = 700
25 Integer,
parameter ::
dimx = 500
26 real*8,
dimension(Nobs,DimX) ::
a,
b
27 real*8,
dimension(Nobs) ::
obs
37 Integer,
save :: seed = 12359
39 seed = mod(seed*1027+25,1048576)
40 rndx = float(seed)/float(1048576)
52 real*8,
Parameter :: xtarg = -1.0
53 real*8,
Parameter :: noise = 1.0
54 Real,
External :: Rndx
62 o = o +
a(i,j) * xtarg +
b(i,j) * xtarg**2
64 obs(i) = o + noise * rndx()
105 INTEGER,
Dimension(:),
Pointer :: cntvect
108 real*8 time0, time1, time2
118 coi_error = coi_createfort( cntvect )
129 coi_error = max( coi_error,
coidef_optfile( cntvect,
'mp_leastsq12.opt' ) )
142#if defined(LICENSE_INT_1) && defined(LICENSE_INT_2) && defined(LICENSE_INT_3) && defined(LICENSE_TEXT)
143 coi_error = max( coi_error,
coidef_license( cntvect, license_int_1, license_int_2, license_int_3, license_text) )
146 If ( coi_error .ne. 0 )
THEN
148 write(*,*)
'**** Fatal Error while loading CONOPT Callback routines.'
150 call flog(
"Skipping Solve due to setup errors", 1 )
155 time0 = omp_get_wtime()
157 time1 = omp_get_wtime() - time0
160 write(*,*)
'End of Least Square example 12 with 1 thread. Return code=',coi_error
162 If ( coi_error /= 0 )
then
163 call flog(
"One Thread: Errors encountered during solution", 1 )
164 elseif ( stacalls == 0 .or. solcalls == 0 )
then
165 call flog(
"One Thread: Status or Solution routine was not called", 1 )
166 elseif ( .not. ( sstat == 1 .and. mstat == 2 ) )
then
167 call flog(
"One Thread: Solver or Model status was not as expected (1,2)", 1 )
173 time0 = omp_get_wtime()
175 time2 = omp_get_wtime() - time0
178 write(*,*)
'Multi thread: End of Least Square example 12. Return code=',coi_error
180 If ( coi_error /= 0 )
then
181 call flog(
"Multi thread: Errors encountered during solution", 1 )
182 elseif ( stacalls == 0 .or. solcalls == 0 )
then
183 call flog(
"Multi thread: Status or Solution routine was not called", 1 )
184 elseif ( .not. ( sstat == 1 .and. mstat == 2 ) )
then
185 call flog(
"Multi thread: Solver or Model status was not as expected (1,2)", 1 )
189 write(*,*)
'End of Least Square example 12. Return code=',coi_error
191 if ( coi_free( cntvect ) /= 0 )
call flog(
"Error while freeing control vector", 1 )
194 write(*,
"('Time for single thread',f10.3)") time1
195 write(*,
"('Time for multi thread',f10.3)") time2
196 write(*,
"('Speedup ',f10.3)") time1/time2
197 write(*,
"('Efficiency ',f10.3)") time1/time2/omp_get_max_threads()
199 call flog(
"Successful Solve", 0 )
211 colsta, rowno, value, nlflag, n, m, nz, &
218 integer,
intent (in) :: n
219 integer,
intent (in) :: m
220 integer,
intent (in) :: nz
221 real*8,
intent (in out),
dimension(n) :: lower
222 real*8,
intent (in out),
dimension(n) :: curr
223 real*8,
intent (in out),
dimension(n) :: upper
224 integer,
intent (in out),
dimension(n) :: vsta
226 integer,
intent (out),
dimension(m) ::
type
227 integer,
intent (in out),
dimension(m) :: esta
229 real*8,
intent (in out),
dimension(m) :: rhs
230 integer,
intent (in out),
dimension(n+1) :: colsta
231 integer,
intent (out),
dimension(nz) :: rowno
232 integer,
intent (in out),
dimension(nz) :: nlflag
233 real*8,
intent (in out),
dimension(nz) ::
value
246 lower(
dimx+i) = -1000.0d0
247 upper(
dimx+i) = +1000.0d0
321Integer Function lsq_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
322 n, nz, thread, usrmem )
328 integer,
intent (in) :: n
329 integer,
intent (in) :: rowno
330 integer,
intent (in) :: nz
331 real*8,
intent (in),
dimension(n) :: x
332 real*8,
intent (in out) :: g
333 real*8,
intent (in out),
dimension(n) :: jac
334 integer,
intent (in),
dimension(nz) :: jcnm
336 integer,
intent (in) :: mode
338 integer,
intent (in) :: ignerr
340 integer,
intent (in out) :: errcnt
342 integer,
intent (in) :: thread
350 if ( rowno .eq.
nobs+1 )
then
354 if ( mode .eq. 1 .or. mode .eq. 3 )
then
364 if ( mode .eq. 2 .or. mode .eq. 3 )
then
376 if ( mode .eq. 1 .or. mode .eq. 3 )
then
379 s = s +
a(rowno,j)*x(j) +
b(rowno,j)*x(j)**2
386 if ( mode .eq. 2 .or. mode .eq. 3 )
then
388 jac(j) =
a(rowno,j) + 2.d0*
b(rowno,j)*x(j)
407 Integer,
Intent (IN) :: n, m, nhess
408 Integer,
Intent (IN OUT) :: nodrv
409 Integer,
Dimension(Nhess),
Intent (Out) :: hsrw, hscl
410 real*8,
Intent(IN OUT) :: usrmem(*)
440Integer Function lsq_2dlagrval( X, U, HSRW, HSCL, HSVL, NODRV, N, M, NHESS, UsrMem )
447 Integer,
Intent (IN) :: n, m, nhess
448 Integer,
Intent (IN OUT) :: nodrv
449 real*8,
Dimension(N),
Intent (IN) :: x
450 real*8,
Dimension(M),
Intent (IN) :: u
451 Integer,
Dimension(Nhess),
Intent (In) :: hsrw, hscl
452 real*8,
Dimension(NHess),
Intent (Out) :: hsvl
453 real*8,
Intent(IN OUT) :: usrmem(*)
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
integer function std_status(modsta, solsta, iter, objval, usrmem)
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
integer function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
integer function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
integer function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
integer function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
integer function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
integer function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
integer function coidef_2dlagrstr(cntvect, coi_2dlagrstr)
define callback routine for providing the structure of the second derivatives of the Lagrangian.
integer function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
integer function coidef_2dlagrval(cntvect, coi_2dlagrval)
define callback routine for computing the values of the second derivatives of the Lagrangian.
integer function coidef_threads(cntvect, threads)
number of threads allowed internally in CONOPT.
integer function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
integer function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
integer function coidef_objcon(cntvect, objcon)
defines the Objective Constraint.
integer function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
integer function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
integer function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
integer function coidef_numhess(cntvect, numhess)
defines the Number of Hessian Nonzeros.
integer function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
integer function coi_solve(cntvect)
method for starting the solving process of CONOPT.
integer function lsq_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
integer function lsq_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
integer function lsq_2dlagrstr(hsrw, hscl, nodrv, n, m, nhess, usrmem)
Specify the structure of the Lagrangian of the Hessian.
integer function lsq_2dlagrval(x, u, hsrw, hscl, hsvl, nodrv, n, m, nhess, usrmem)
Compute the Lagrangian of the Hessian.
void defdata()
Defines the data for the problem.
float rndx()
Defines a pseudo random number between 0 and 1.
program leastsquare
Main program. A simple setup and call of CONOPT.
real *8, dimension(nobs) obs
real *8, dimension(nobs, dimx) b
real *8, dimension(nobs, dimx) a
subroutine flog(msg, code)