6#if defined(_WIN32) && !defined(_WIN64)
7#define dec_directives_win32
11 Integer,
parameter :: Nobs = 700
12 Integer,
parameter :: DimX = 500
13 real*8,
dimension(Nobs,DimX) ::
a,
b
14 real*8,
dimension(Nobs) ::
obs
24 Integer,
save :: seed = 12359
26 seed = mod(seed*1027+25,1048576)
27 rndx = float(seed)/float(1048576)
39 real*8,
Parameter :: xtarg = -1.0
40 real*8,
Parameter :: noise = 1.0
41 Real,
External :: Rndx
49 o = o +
a(i,j) * xtarg +
b(i,j) * xtarg**2
51 obs(i) = o + noise * rndx()
79#ifdef dec_directives_win32
92 INTEGER,
Dimension(:),
Pointer :: cntvect
95 real*8 time0, time1, time2
117 coi_error = max( coi_error,
coidef_optfile( cntvect,
'mp_lestsq2.opt' ) )
130#if defined(CONOPT_LICENSE_INT_1) && defined(CONOPT_LICENSE_INT_2) && defined(CONOPT_LICENSE_INT_3) && defined(CONOPT_LICENSE_TEXT)
131 coi_error = max( coi_error,
coidef_license( cntvect, conopt_license_int_1, conopt_license_int_2, conopt_license_int_3, conopt_license_text) )
134 If ( coi_error .ne. 0 )
THEN
136 write(*,*)
'**** Fatal Error while loading CONOPT Callback routines.'
138 call flog(
"Skipping Solve due to setup errors", 1 )
143 time0 = omp_get_wtime()
145 time1 = omp_get_wtime() - time0
148 write(*,*)
'One thread: End of Least Square example 2. Return code=',coi_error
150 If ( coi_error /= 0 )
then
151 call flog(
"One thread: Errors encountered during solution", 1 )
152 elseif ( stacalls == 0 .or. solcalls == 0 )
then
153 call flog(
"One thread: Status or Solution routine was not called", 1 )
154 elseif ( sstat /= 1 .or. mstat /= 2 )
then
155 call flog(
"One thread: Solver or Model status was not as expected (1,2)", 1 )
156 elseif ( abs(
obj - 19.44434311d0 ) > 1.d-7 )
then
157 call flog(
"One thread: Incorrect objective returned", 1 )
163 time0 = omp_get_wtime()
165 time2 = omp_get_wtime() - time0
168 write(*,*)
'Many threads: End of Least Square example 2. Return code=',coi_error
170 If ( coi_error /= 0 )
then
171 call flog(
"Many threads: Errors encountered during solution", 1 )
172 elseif ( stacalls == 0 .or. solcalls == 0 )
then
173 call flog(
"Many threads: Status or Solution routine was not called", 1 )
174 elseif ( sstat /= 1 .or. mstat /= 2 )
then
175 call flog(
"Many threads: Solver or Model status was not as expected (1,2)", 1 )
176 elseif ( abs(
obj - 19.44434311d0 ) > 1.d-7 )
then
177 call flog(
"Many threads: Incorrect objective returned", 1 )
180 if (
coi_free( cntvect ) /= 0 )
call flog(
"Error while freeing control vector", 1 )
183 write(*,
"('Time for single thread',f10.3)") time1
184 write(*,
"('Time for multi thread',f10.3)") time2
185 write(*,
"('Speedup ',f10.3)") time1/time2
186 write(*,
"('Efficiency ',f10.3)") time1/time2/omp_get_max_threads()
188 call flog(
"Successful Solve", 0 )
199Integer Function lsq_readmatrix( lower, curr, upper, vsta, type, rhs, esta, &
200 colsta, rowno, value, nlflag, n, m, nz, &
202#ifdef dec_directives_win32
207 integer,
intent (in) :: n
208 integer,
intent (in) :: m
209 integer,
intent (in) :: nz
210 real*8,
intent (in out),
dimension(n) :: lower
211 real*8,
intent (in out),
dimension(n) :: curr
212 real*8,
intent (in out),
dimension(n) :: upper
213 integer,
intent (in out),
dimension(n) :: vsta
215 integer,
intent (out),
dimension(m) ::
type
216 integer,
intent (in out),
dimension(m) :: esta
218 real*8,
intent (in out),
dimension(m) :: rhs
219 integer,
intent (in out),
dimension(n+1) :: colsta
220 integer,
intent (out),
dimension(nz) :: rowno
221 integer,
intent (in out),
dimension(nz) :: nlflag
222 real*8,
intent (in out),
dimension(nz) ::
value
306Integer Function lsq_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
307 n, nz, thread, usrmem )
308#ifdef dec_directives_win32
313 integer,
intent (in) :: n
314 integer,
intent (in) :: rowno
315 integer,
intent (in) :: nz
316 real*8,
intent (in),
dimension(n) :: x
317 real*8,
intent (in out) :: g
318 real*8,
intent (in out),
dimension(n) :: jac
319 integer,
intent (in),
dimension(nz) :: jcnm
321 integer,
intent (in) :: mode
323 integer,
intent (in) :: ignerr
325 integer,
intent (in out) :: errcnt
327 integer,
intent (in) :: thread
335 if ( rowno .eq.
nobs+1 )
then
339 if ( mode .eq. 1 .or. mode .eq. 3 )
then
349 if ( mode .eq. 2 .or. mode .eq. 3 )
then
361 if ( mode .eq. 1 .or. mode .eq. 3 )
then
364 s = s +
a(rowno,j)*x(j) +
b(rowno,j)*x(j)**2
371 if ( mode .eq. 2 .or. mode .eq. 3 )
then
373 jac(j) =
a(rowno,j) + 2.d0*
b(rowno,j)*x(j)
385Integer Function lsq_2dlagrstr( HSRW, HSCL, NODRV, N, M, NHESS, UsrMem )
386#ifdef dec_directives_win32
392 Integer,
Intent (IN) :: n, m, nhess
393 Integer,
Intent (IN OUT) :: nodrv
394 Integer,
Dimension(Nhess),
Intent (Out) :: hsrw, hscl
395 real*8,
Intent(IN OUT) :: usrmem(*)
425Integer Function lsq_2dlagrval( X, U, HSRW, HSCL, HSVL, NODRV, N, M, NHESS, UsrMem )
426#ifdef dec_directives_win32
432 Integer,
Intent (IN) :: n, m, nhess
433 Integer,
Intent (IN OUT) :: nodrv
434 real*8,
Dimension(N),
Intent (IN) :: x
435 real*8,
Dimension(M),
Intent (IN) :: u
436 Integer,
Dimension(Nhess),
Intent (In) :: hsrw, hscl
437 real*8,
Dimension(NHess),
Intent (Out) :: hsvl
438 real*8,
Intent(IN OUT) :: usrmem(*)
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
integer function std_status(modsta, solsta, iter, objval, usrmem)
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
integer(c_int) function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
integer(c_int) function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
integer(c_int) function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
integer(c_int) function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
integer(c_int) function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
integer(c_int) function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
integer(c_int) function coidef_2dlagrstr(cntvect, coi_2dlagrstr)
define callback routine for providing the structure of the second derivatives of the Lagrangian.
integer(c_int) function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
integer(c_int) function coidef_2dlagrval(cntvect, coi_2dlagrval)
define callback routine for computing the values of the second derivatives of the Lagrangian.
integer(c_int) function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
integer(c_int) function coidef_debugfv(cntvect, debugfv)
turn Debugging of FDEval on and off.
integer(c_int) function coidef_threads(cntvect, threads)
number of threads allowed internally in CONOPT.
integer(c_int) function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
integer(c_int) function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
integer(c_int) function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
integer(c_int) function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
integer(c_int) function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
integer(c_int) function coidef_numhess(cntvect, numhess)
defines the Number of Hessian Nonzeros.
integer(c_int) function coidef_objcon(cntvect, objcon)
defines the Objective Constraint.
integer(c_int) function coi_create(cntvect)
initializes CONOPT and creates the control vector.
integer(c_int) function coi_free(cntvect)
frees the control vector.
integer(c_int) function coi_solve(cntvect)
method for starting the solving process of CONOPT.
integer function lsq_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
integer function lsq_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
integer function lsq_2dlagrstr(hsrw, hscl, nodrv, n, m, nhess, usrmem)
Specify the structure of the Lagrangian of the Hessian.
integer function lsq_2dlagrval(x, u, hsrw, hscl, hsvl, nodrv, n, m, nhess, usrmem)
Compute the Lagrangian of the Hessian.
void defdata()
Defines the data for the problem.
float rndx()
Defines a pseudo random number between 0 and 1.
program leastsquare
Main program. A simple setup and call of CONOPT.
real *8, dimension(nobs, dimx) a
real *8, dimension(nobs, dimx) b
real *8, dimension(nobs) obs
subroutine flog(msg, code)