CONOPT
Loading...
Searching...
No Matches
nleq04.f90
Go to the documentation of this file.
1!> @file nleq04.f90
2!! @ingroup FORT1THREAD_EXAMPLES
3!!
4!!
5!! Nonlinear constraint to bound conversion example 04
6!!
7!! This is a CONOPT implementation of the GAMS model:
8!!
9!! @verbatim
10!! variable x1
11!! equation e1;
12!!
13!! e1 .. log(x1) + 0.005/sqr(x) =L= 0.005;
14!!
15!! x1.lo = 1.e-7;
16!! x1.l = 10.0;
17!! model Nleq / all /;
18!! solve Nleq using nlp maximizing x1;
19!! @endverbatim
20!!
21!!
22!!
23!! For more information about the individual callbacks, please have a look at the source code.
24
25!> Main program. A simple setup and call of CONOPT
26!!
27Program nleq04
28
29 Use proginfo
30 Use coidef
31 implicit None
32!
33! Declare the user callback routines as Integer, External:
34!
35 Integer, External :: nleq_readmatrix ! Mandatory Matrix definition routine defined below
36 Integer, External :: nleq_fdeval ! Function and Derivative evaluation routine
37 ! needed a nonlinear model.
38 Integer, External :: std_status ! Standard callback for displaying solution status
39 Integer, External :: std_solution ! Standard callback for displaying solution values
40 Integer, External :: std_message ! Standard callback for managing messages
41 Integer, External :: std_errmsg ! Standard callback for managing error messages
42 Integer, External :: std_triord ! Standard callback for Nleqngular order
43#if defined(itl)
44!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Nleq_ReadMatrix
45!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Nleq_FDEval
46!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Status
47!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Solution
48!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Message
49!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_ErrMsg
50!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_TriOrd
51#endif
52!
53! Control vector
54!
55 INTEGER :: numcallback
56 INTEGER, Dimension(:), Pointer :: cntvect
57 INTEGER :: coi_error
58
59 call startup
60!
61! Create and initialize a Control Vector
62!
63 numcallback = coidef_size()
64 Allocate( cntvect(numcallback) )
65 coi_error = coidef_inifort( cntvect )
66!
67! Tell CONOPT about the size of the model by populating the Control Vector:
68!
69 coi_error = max( coi_error, coidef_numvar( cntvect, 1 ) ) ! # variables
70 coi_error = max( coi_error, coidef_numcon( cntvect, 1 ) ) ! # constraints
71 coi_error = max( coi_error, coidef_numnz( cntvect, 1 ) ) ! # nonzeros in the Jacobian
72 coi_error = max( coi_error, coidef_numnlnz( cntvect, 1 ) ) ! # of which are nonlinear
73 coi_error = max( coi_error, coidef_optdir( cntvect, +1 ) ) ! Maximize
74 coi_error = max( coi_error, coidef_objvar( cntvect, 1 ) ) ! Objective is variable 3
75 coi_error = max( coi_error, coidef_optfile( cntvect, 'Nleq04.opt' ) )
76!
77! Tell CONOPT about the callback routines:
78!
79 coi_error = max( coi_error, coidef_readmatrix( cntvect, nleq_readmatrix ) )
80 coi_error = max( coi_error, coidef_fdeval( cntvect, nleq_fdeval ) )
81 coi_error = max( coi_error, coidef_status( cntvect, std_status ) )
82 coi_error = max( coi_error, coidef_solution( cntvect, std_solution ) )
83 coi_error = max( coi_error, coidef_message( cntvect, std_message ) )
84 coi_error = max( coi_error, coidef_errmsg( cntvect, std_errmsg ) )
85 coi_error = max( coi_error, coidef_triord( cntvect, std_triord ) )
86
87#if defined(LICENSE_INT_1) && defined(LICENSE_INT_2) && defined(LICENSE_INT_3) && defined(LICENSE_TEXT)
88 coi_error = max( coi_error, coidef_license( cntvect, license_int_1, license_int_2, license_int_3, license_text) )
89#endif
90
91 If ( coi_error .ne. 0 ) THEN
92 write(*,*)
93 write(*,*) '**** Fatal Error while loading CONOPT Callback routines.'
94 write(*,*)
95 call flog( "Skipping Solve due to setup errors", 1 )
96 ENDIF
97!
98! Save the solution so we can check the duals:
99!
100 do_allocate = .true.
101!
102! Start CONOPT:
103!
104 coi_error = coi_solve( cntvect )
105
106 write(*,*)
107 write(*,*) 'End of Nleq04 example. Return code=',coi_error
108
109 If ( coi_error /= 0 ) then
110 call flog( "Errors encountered during solution", 1 )
111 elseif ( stacalls == 0 .or. solcalls == 0 ) then
112 call flog( "Status or Solution routine was not called", 1 )
113 elseif ( sstat /= 1 .or. mstat /= 2 ) then
114 call flog( "Solver and Model Status was not as expected (1,2)", 1 )
115 elseif ( abs( obj-1.0d0 ) > 0.000001d0 ) then
116 call flog( "Incorrect objective returned", 1 )
117 Else
118 Call checkdual( 'Nleq04', maximize )
119 endif
120
121 if ( coi_free(cntvect) /= 0 ) call flog( "Error while freeing control vector",1)
122
123 call flog( "Successful Solve", 0 )
124
125End Program nleq04
126!
127! ============================================================================
128! Define information about the model:
129!
130
131!> Define information about the model
132!!
133!! @include{doc} readMatrix_params.dox
134Integer Function nleq_readmatrix( lower, curr, upper, vsta, type, rhs, esta, &
135 colsta, rowno, value, nlflag, n, m, nz, &
136 usrmem )
137#if defined(itl)
138!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Nleq_ReadMatrix
139#endif
140 implicit none
141 integer, intent (in) :: n ! number of variables
142 integer, intent (in) :: m ! number of constraints
143 integer, intent (in) :: nz ! number of nonzeros
144 real*8, intent (in out), dimension(n) :: lower ! vector of lower bounds
145 real*8, intent (in out), dimension(n) :: curr ! vector of initial values
146 real*8, intent (in out), dimension(n) :: upper ! vector of upper bounds
147 integer, intent (in out), dimension(n) :: vsta ! vector of initial variable status
148 ! (not defined here)
149 integer, intent (out), dimension(m) :: type ! vector of equation types
150 integer, intent (in out), dimension(m) :: esta ! vector of initial equation status
151 ! (not defined here)
152 real*8, intent (in out), dimension(m) :: rhs ! vector of right hand sides
153 integer, intent (in out), dimension(n+1) :: colsta ! vector with start of column indices
154 integer, intent (out), dimension(nz) :: rowno ! vector of row numbers
155 integer, intent (in out), dimension(nz) :: nlflag ! vector of nonlinearity flags
156 real*8, intent (in out), dimension(nz) :: value ! vector of matrix values
157 real*8 usrmem(*) ! optional user memory
158!
159! Information about Variables:
160! Default: Lower = -Inf, Curr = 0, and Upper = +inf.
161! Default: the status information in Vsta is not used.
162!
163! The model uses defaults
164!
165! Information about Constraints:
166! Default: Rhs = 0
167! Default: the status information in Esta and the function
168! value in FV are not used.
169! Default: Type: There is no default.
170! 0 = Equality,
171! 1 = Greater than or equal,
172! 2 = Less than or equal,
173! 3 = Non binding.
174!
175! Constraint 1: e1
176! Rhs = 10.0 and type Less than or Equal
177!
178 rhs(1) = 0.005d0
179 type(1) = 2
180!
181 lower(1) = 1.0d-7
182 curr(1) = 10.0d0
183!
184! Information about the Jacobian. We use the standard method with
185! Rowno, Value, Nlflag and Colsta and we do not use Colno.
186!
187! Colsta = Start of column indices (No Defaults):
188! Rowno = Row indices
189! Value = Value of derivative (by default only linear
190! derivatives are used)
191! Nlflag = 0 for linear and 1 for nonlinear derivative
192! (not needed for completely linear models)
193!
194! Indices
195! x(1)
196! 1: 1
197!
198 colsta(1) = 1
199 colsta(2) = 2
200 rowno(1) = 1
201!
202! Nonlinearity Structure: L = 0 are linear and NL = 1 are nonlinear
203! x(1)
204! 1: NL
205!
206 nlflag(1) = 1
207!
208! Value (Linear only)
209! x(1)
210! 1: NL
211!
212 nleq_readmatrix = 0 ! Return value means OK
213
214end Function nleq_readmatrix
215!
216!==========================================================================
217! Compute nonlinear terms and non-constant Jacobian elements
218!
219
220!> Compute nonlinear terms and non-constant Jacobian elements
221!!
222!! @include{doc} fdeval_params.dox
223Integer Function nleq_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
224 n, nz, thread, usrmem )
225#if defined(itl)
226!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Nleq_FDEval
227#endif
228 implicit none
229 integer, intent (in) :: n ! number of variables
230 integer, intent (in) :: rowno ! number of the row to be evaluated
231 integer, intent (in) :: nz ! number of nonzeros in this row
232 real*8, intent (in), dimension(n) :: x ! vector of current solution values
233 real*8, intent (in out) :: g ! constraint value
234 real*8, intent (in out), dimension(n) :: jac ! vector of derivatives for current constraint
235 integer, intent (in), dimension(nz) :: jcnm ! list of variables that appear nonlinearly
236 ! in this row. Ffor information only.
237 integer, intent (in) :: mode ! evaluation mode: 1 = function value
238 ! 2 = derivatives, 3 = both
239 integer, intent (in) :: ignerr ! if 1 then errors can be ignored as long
240 ! as errcnt is incremented
241 integer, intent (in out) :: errcnt ! error counter to be incremented in case
242 ! of function evaluation errors.
243 integer, intent (in) :: thread
244 real*8 usrmem(*) ! optional user memory
245!
246! Row 1: e1
247!
248 if ( rowno .eq. 1 ) then
249!
250! Mode = 1 or 3. G = log(x1)
251!
252 if ( mode .eq. 1 .or. mode .eq. 3 ) then
253 g = log(x(1))+0.005d0/(x(1)*x(1))
254 endif
255!
256! Mode = 2 or 3: Derivative values:
257!
258 if ( mode .eq. 2 .or. mode .eq. 3 ) then
259 jac(1) = 1.d0/x(1) - 0.01d0/(x(1)*x(1)*x(1))
260 endif
261 nleq_fdeval = 0
262 else
263!
264! There are no other rows:
265!
266 nleq_fdeval = 1
267 endif
268
269end Function nleq_fdeval
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
Definition comdecl.f90:128
integer function std_status(modsta, solsta, iter, objval, usrmem)
Definition comdecl.f90:82
subroutine checkdual(case, minmax)
Definition comdecl.f90:365
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
Definition comdecl.f90:203
integer function std_triord(mode, type, status, irow, icol, inf, value, resid, usrmem)
Definition comdecl.f90:291
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
Definition comdecl.f90:248
integer function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
integer function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
integer function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
integer function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
integer function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
integer function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
integer function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
integer function coidef_triord(cntvect, coi_triord)
define callback routine for providing the triangular order information.
integer function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
Definition coistart.f90:680
integer function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
Definition coistart.f90:358
integer function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
Definition coistart.f90:437
integer function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
Definition coistart.f90:552
integer function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
Definition coistart.f90:476
integer function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
Definition coistart.f90:398
integer function coidef_objvar(cntvect, objvar)
defines the Objective Variable.
Definition coistart.f90:586
integer function coidef_size()
returns the size the Control Vector must have, measured in standard Integer units.
Definition coistart.f90:176
integer function coidef_inifort(cntvect)
initialisation method for Fortran applications.
Definition coistart.f90:314
integer function coi_solve(cntvect)
method for starting the solving process of CONOPT.
Definition coistart.f90:14
real *8 obj
Definition comdecl.f90:10
integer solcalls
Definition comdecl.f90:9
integer sstat
Definition comdecl.f90:12
integer stacalls
Definition comdecl.f90:8
subroutine flog(msg, code)
Definition comdecl.f90:56
logical do_allocate
Definition comdecl.f90:21
integer, parameter maximize
Definition comdecl.f90:25
integer mstat
Definition comdecl.f90:11
subroutine startup
Definition comdecl.f90:35
integer function nleq_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
Definition nleq01.f90:261
integer function nleq_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
Definition nleq01.f90:173
program nleq04
Main program. A simple setup and call of CONOPT.
Definition nleq04.f90:27