CONOPT
Loading...
Searching...
No Matches
pinsquare.f90
Go to the documentation of this file.
1!> @file pinsquare.f90
2!! @ingroup FORT1THREAD_EXAMPLES
3!!
4!!
5!! This is a CONOPT implementation of the Pindyck model from the
6!! GAMS model library. The original model is revised so the P
7!! variables are fixed. This gives rise to a square system of
8!! equations and the Square option is tested.
9!!
10!! The model also uses the standard TriOrd routine to show the
11!! pre-triangular part of the model.
12!! The model can be made infeasible in the pretriangular part
13!! by changing a bound (indicated by a comment at lower(78)).
14!!
15!!
16!! For more information about the individual callbacks, please have a look at the source code.
17
18#if defined(_WIN32) && !defined(_WIN64)
19#define dec_directives_win32
20#endif
21
22!> Main program. A simple setup and call of CONOPT
23!!
24Program pinsquare
25 Use proginfo
27 Use data_t
28 Implicit none
29!
30! Declare the user callback routines as Integer, External:
31!
32 Integer, External :: pin_readmatrix ! Mandatory Matrix definition routine defined below
33 Integer, External :: pin_fdeval ! Function and Derivative evaluation routine
34 ! needed a nonlinear model.
35 Integer, External :: std_status ! Standard callback for displaying solution status
36 Integer, External :: pin_solution ! Specialized callback for displaying solution values
37 Integer, External :: std_message ! Standard callback for managing messages
38 Integer, External :: std_errmsg ! Standard callback for managing error messages
39 Integer, External :: std_triord ! Standard callback for triangular order
40#ifdef dec_directives_win32
41!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Pin_ReadMatrix
42!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Pin_FDEval
43!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Status
44!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Pin_Solution
45!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Message
46!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_ErrMsg
47!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_TriOrd
48#endif
49!
50! Control vector
51!
52 INTEGER, Dimension(:), Pointer :: cntvect
53 INTEGER :: coi_error
54!
55! Create and initialize a Control Vector
56!
57 call startup
58 coi_error = coi_create( cntvect )
59!
60! Define the number of time periods, T.
61!
62 t = 16
63!
64! Tell CONOPT about the size of the model by populating the Control Vector:
65!
66! Number of variables (excl. slacks): 7 per period
67!
68 coi_error = max( coi_error, coidef_numvar( cntvect, 7 * t ) )
69!
70! Number of equations: 1 objective + 6 per period
71!
72 coi_error = max( coi_error, coidef_numcon( cntvect, 1 + 6 * t ) )
73!
74! Number of nonzeros in the Jacobian. See the counting in ReadMatrix below:
75! For each period there is 1 in the objective, 16 for unlagged
76! variables and 4 for lagged variables.
77!
78 coi_error = max( coi_error, coidef_numnz( cntvect, 17 * t + 4 * (t-1) ) )
79!
80! Number of nonlinear nonzeros. 5 unlagged for each period.
81!
82 coi_error = max( coi_error, coidef_numnlnz( cntvect, 5 * t ) )
83!
84! Direction: +1 = maximization.
85!
86 coi_error = max( coi_error, coidef_optdir( cntvect, 1 ) )
87!
88! Objective: Constraint no 1
89!
90 coi_error = max( coi_error, coidef_objcon( cntvect, 1 ) )
91!
92! Square system ( the objective above is not really needed or used )
93!
94 coi_error = max( coi_error, coidef_square( cntvect, 1 ) )
95!
96! Options file = test.opt
97!
98 coi_error = max( coi_error, coidef_optfile( cntvect, 'test.opt' ) )
99!
100! Tell CONOPT about the callback routines:
101!
102 coi_error = max( coi_error, coidef_readmatrix( cntvect, pin_readmatrix ) )
103 coi_error = max( coi_error, coidef_fdeval( cntvect, pin_fdeval ) )
104 coi_error = max( coi_error, coidef_status( cntvect, std_status ) )
105 coi_error = max( coi_error, coidef_solution( cntvect, pin_solution ) )
106 coi_error = max( coi_error, coidef_message( cntvect, std_message ) )
107 coi_error = max( coi_error, coidef_errmsg( cntvect, std_errmsg ) )
108 coi_error = max( coi_error, coidef_triord( cntvect, std_triord ) )
109
110#if defined(CONOPT_LICENSE_INT_1) && defined(CONOPT_LICENSE_INT_2) && defined(CONOPT_LICENSE_INT_3) && defined(CONOPT_LICENSE_TEXT)
111 coi_error = max( coi_error, coidef_license( cntvect, conopt_license_int_1, conopt_license_int_2, conopt_license_int_3, conopt_license_text) )
112#endif
113
114 If ( coi_error .ne. 0 ) THEN
115 write(*,*)
116 write(*,*) '**** Fatal Error while loading CONOPT Callback routines.'
117 write(*,*)
118 call flog( "Skipping Solve due to setup errors", 1 )
119 ENDIF
120!
121! Start CONOPT:
122!
123 coi_error = coi_solve( cntvect )
124
125 write(*,*)
126 write(*,*) 'End of Pinsquare Model. Return code=',coi_error
127
128 If ( coi_error /= 0 ) then
129 call flog( "Errors encountered during solution", 1 )
130 elseif ( stacalls == 0 .or. solcalls == 0 ) then
131 call flog( "Status or Solution routine was not called", 1 )
132 elseif ( mstat /= 16 .or. sstat /= 1 ) then
133 call flog( "The model or solver status was not (16,1) as expected", 1 )
134 endif
135
136 if ( coi_free(cntvect) /= 0 ) call flog( "Error while freeing control vector",1)
137
138 call flog( "Successful Solve", 0 )
139!
140! Free solution memory
141!
142 call finalize
144end Program pinsquare
145!
146! =====================================================================
147! Define information about the model structure
148!
149
150!> Define information about the model
151!!
152!! @include{doc} readMatrix_params.dox
153Integer Function pin_readmatrix( lower, curr, upper, vsta, type, rhs, esta, &
154 colsta, rowno, value, nlflag, n, m, nz, usrmem )
155#ifdef dec_directives_win32
156!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Pin_ReadMatrix
157#endif
158 Use data_t
159 implicit none
160 integer, intent (in) :: n ! number of variables
161 integer, intent (in) :: m ! number of constraints
162 integer, intent (in) :: nz ! number of nonzeros
163 real*8, intent (in out), dimension(n) :: lower ! vector of lower bounds
164 real*8, intent (in out), dimension(n) :: curr ! vector of initial values
165 real*8, intent (in out), dimension(n) :: upper ! vector of upper bounds
166 integer, intent (in out), dimension(n) :: vsta ! vector of initial variable status
167 ! (not defined here)
168 integer, intent (out), dimension(m) :: type ! vector of equation types
169 integer, intent (in out), dimension(m) :: esta ! vector of initial equation status
170 ! (not defined here)
171 real*8, intent (in out), dimension(m) :: rhs ! vector of right hand sides
172 integer, intent (in out), dimension(n+1) :: colsta ! vector with start of column indices
173 integer, intent (out), dimension(nz) :: rowno ! vector of row numbers
174 integer, intent (in out), dimension(nz) :: nlflag ! vector of nonlinearity flags
175 real*8, intent (in out), dimension(nz) :: value ! vector of matrix values
176 real*8 usrmem(*) ! optional user memory
177
178 Integer :: it, is, i, icol, iz
179!
180! Define the information for the columns.
181!
182! We should not supply status information, vsta.
183!
184! We order the variables as follows:
185! td, cs, s, d, r, p, and rev. All variables for period 1 appears
186! first followed by all variables for period 2 etc.
187!
188! td, cs, s, and d have lower bounds of 0, r and p have lower
189! bounds of 1, and rev has no lower bound.
190! All have infinite upper bounds (default).
191! The initial value of td is 18, s is 7, cs is 7*t, d is td-s,
192! p is 14, and r is r(t-1)-d. No initial value for rev.
193!
194 do it = 1, t
195 is = 7*(it-1)
196 lower(is+1) = 0.d0
197 lower(is+2) = 0.d0
198 lower(is+3) = 0.d0
199 lower(is+4) = 0.d0
200 lower(is+5) = 1.d0
201 lower(is+6) = 1.d0
202 curr(is+1) = 18.d0
203 curr(is+2) = 7.d0*it
204 curr(is+3) = 7.d0
205 curr(is+4) = curr(is+1) - curr(is+3)
206 if ( it .gt. 1 ) then
207 curr(is+5) = curr(is+5-7) - curr(is+4)
208 else
209 curr(is+5) = 500.d0 - curr(is+4)
210 endif
211 curr(is+6) = 14.d0
212!
213! Now fix P at the initial value
214!
215 lower(is+6) = curr(is+6)
216 upper(is+6) = curr(is+6)
217 enddo
218!
219! To make the model infeasible, add a lower bound on variable 78
220! above the recursive value of 14.245
221!
222! lower(78) = 15
223!
224! Define the information for the rows
225!
226! We order the constraints as follows: The objective is first,
227! followed by tddef, sdef, csdef, ddef, rdef, and revdef for
228! the first period, the same for the second period, etc.
229!
230! The objective is a nonbinding constraint:
231!
232 type(1) = 3
233!
234! All others are equalities:
235!
236 do i = 2, m
237 type(i) = 0
238 enddo
239!
240! Right hand sides: In all periods except the first, only tddef
241! has a nonzero right hand side of 1+2.3*1.015**(t-1).
242! In the initial period there are contributions from lagged
243! variables in the constraints that have lagged variables.
244!
245 do it = 1, t
246 is = 1 + 6*(it-1)
247 rhs(is+1) = 1.d0+2.3d0*1.015d0**(it-1)
248 enddo
249!
250! tddef: + 0.87*td(0)
251!
252 rhs(2) = rhs(2) + 0.87d0*18.d0
253!
254! sdef: +0.75*s(0)
255!
256 rhs(3) = 0.75d0*6.5d0
257!
258! csdef: +1*cs(0)
259!
260 rhs(4) = 0.d0
261!
262! rdef: +1*r(0)
263!
264 rhs(6) = 500.d0
265!
266! Define the structure and content of the Jacobian:
267! To help define the Jacobian pattern and values it can be useful to
268! make a picture of the Jacobian. We describe the variables for one
269! period and the constraints they are part of:
270!
271! td cs s d r p rev
272! Obj (1+r)**(1-t)
273! Period t:
274! tddef 1.0 0.13
275! sdef NL 1.0 NL
276! csdef 1.0 -1.0
277! ddef -1.0 1.0 1.0
278! rdef 1.0 1.0
279! revdef NL NL NL 1.0
280! Period t+1:
281! tddef -0.87
282! sdef -0.75
283! csdef -1.0
284! ddef
285! rdef -1.0
286! revdef
287!
288! The Jacobian has to be sorted column-wise so we will just define
289! the elements column by column according to the table above:
290!
291 iz = 1
292 icol = 1
293 do it = 1, t
294!
295! is points to the position before the first equation for the period
296!
297 is = 1 + 6*(it-1)
298!
299! Column td:
300!
301 colsta(icol) = iz
302 icol = icol + 1
303 rowno(iz) = is+1
304 value(iz) = +1.d0
305 nlflag(iz) = 0
306 iz = iz + 1
307 rowno(iz) = is+4
308 value(iz) = -1.d0
309 nlflag(iz) = 0
310 iz = iz + 1
311 if ( it .lt. t ) then
312 rowno(iz) = is+7
313 value(iz) = -0.87d0
314 nlflag(iz) = 0
315 iz = iz + 1
316 endif
317!
318! Column cs
319!
320 colsta(icol) = iz
321 icol = icol + 1
322 rowno(iz) = is+2
323 nlflag(iz) = 1
324 iz = iz + 1
325 rowno(iz) = is+3
326 value(iz) = +1.d0
327 nlflag(iz) = 0
328 iz = iz + 1
329 if ( it .lt. t ) then
330 rowno(iz) = is+9
331 value(iz) = -1.d0
332 nlflag(iz) = 0
333 iz = iz + 1
334 endif
335!
336! Column s
337!
338 colsta(icol) = iz
339 icol = icol + 1
340 rowno(iz) = is+2
341 value(iz) = +1.d0
342 nlflag(iz) = 0
343 iz = iz + 1
344 rowno(iz) = is+3
345 value(iz) = -1.d0
346 nlflag(iz) = 0
347 iz = iz + 1
348 rowno(iz) = is+4
349 value(iz) = +1.d0
350 nlflag(iz) = 0
351 iz = iz + 1
352 if ( it .lt. t ) then
353 rowno(iz) = is+8
354 value(iz) = -0.75d0
355 nlflag(iz) = 0
356 iz = iz + 1
357 endif
358!
359! Column d:
360!
361 colsta(icol) = iz
362 icol = icol + 1
363 rowno(iz) = is+4
364 value(iz) = +1.d0
365 nlflag(iz) = 0
366 iz = iz + 1
367 rowno(iz) = is+5
368 value(iz) = +1.d0
369 nlflag(iz) = 0
370 iz = iz + 1
371 rowno(iz) = is+6
372 nlflag(iz) = 1
373 iz = iz + 1
374!
375! Column r:
376!
377 colsta(icol) = iz
378 icol = icol + 1
379 rowno(iz) = is+5
380 value(iz) = +1.d0
381 nlflag(iz) = 0
382 iz = iz + 1
383 rowno(iz) = is+6
384 nlflag(iz) = 1
385 iz = iz + 1
386 if ( it .lt. t ) then
387 rowno(iz) = is+11
388 value(iz) = -1.d0
389 nlflag(iz) = 0
390 iz = iz + 1
391 endif
392!
393! Column p:
394!
395 colsta(icol) = iz
396 icol = icol + 1
397 rowno(iz) = is+1
398 value(iz) = +0.13d0
399 nlflag(iz) = 0
400 iz = iz + 1
401 rowno(iz) = is+2
402 nlflag(iz) = 1
403 iz = iz + 1
404 rowno(iz) = is+6
405 nlflag(iz) = 1
406 iz = iz + 1
407!
408! Column rev:
409!
410 colsta(icol) = iz
411 icol = icol + 1
412 rowno(iz) = +1
413 value(iz) = 1.05d0**(1-it)
414 nlflag(iz) = 0
415 iz = iz + 1
416 rowno(iz) = is+6
417 value(iz) = 1.d0
418 nlflag(iz) = 0
419 iz = iz + 1
420 enddo
421 colsta(icol) = iz
422
424
425end Function pin_readmatrix
426!
427! =====================================================================
428! Compute nonlinear terms and non-constant Jacobian elements
429!
430
431!> Compute nonlinear terms and non-constant Jacobian elements
432!!
433!! @include{doc} fdeval_params.dox
434Integer Function pin_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
435 n, nz, thread, usrmem )
436#ifdef dec_directives_win32
437!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Pin_FDEval
438#endif
439 Use data_t
440 implicit none
441 integer, intent (in) :: n ! number of variables
442 integer, intent (in) :: rowno ! number of the row to be evaluated
443 integer, intent (in) :: nz ! number of nonzeros in this row
444 real*8, intent (in), dimension(n) :: x ! vector of current solution values
445 real*8, intent (in out) :: g ! constraint value
446 real*8, intent (in out), dimension(n) :: jac ! vector of derivatives for current constraint
447 integer, intent (in), dimension(nz) :: jcnm ! list of variables that appear nonlinearly
448 ! in this row. Ffor information only.
449 integer, intent (in) :: mode ! evaluation mode: 1 = function value
450 ! 2 = derivatives, 3 = both
451 integer, intent (in) :: ignerr ! if 1 then errors can be ignored as long
452 ! as errcnt is incremented
453 integer, intent (in out) :: errcnt ! error counter to be incremented in case
454 ! of function evaluation errors.
455 integer, intent (in) :: thread
456 real*8 usrmem(*) ! optional user memory
457
458 integer it, is
459 real*8 h1, h2
460!
461! Compute the number of the period
462!
463 pin_fdeval = 0
464 it = (rowno+4) / 6
465 is = 7*(it-1)
466 if ( rowno == (it-1)*6+3 ) then
467!
468! sdef equation. Nonlinear term = -(1.1+0.1*p)*1.02**(-cs/7)
469!
470 h1 = (1.1d0+0.1d0*x(is+6))
471 h2 = 1.02d0**(-x(is+2)/7.d0)
472 if ( mode == 1 .or. mode == 3 ) then
473 g = -h1*h2
474 endif
475 if ( mode == 2 .or. mode == 3 ) then
476 jac(is+2) = h1*h2*log(1.02d0)/7.d0
477 jac(is+6) = -h2*0.1d0
478 endif
479 elseif ( rowno == (it-1)*6+7 ) then
480!
481! revdef equation. Nonlinear term = -d*(p-250/r)
482!
483 if ( mode == 1 .or. mode == 3 ) then
484 g = -x(is+4)*(x(is+6)-250.d0/x(is+5))
485 endif
486 if ( mode == 2 .or. mode == 3 ) then
487 jac(is+4) = -(x(is+6)-250.d0/x(is+5))
488 jac(is+5) = -x(is+4)*250d0/x(is+5)**2
489 jac(is+6) = -x(is+4)
490 endif
491 else
492!
493! Error - this equation is not nonlinear
494!
495 write(*,*)
496 write(*,*) 'Error. FDEval called with rowno=',rowno
497 write(*,*)
498 pin_fdeval = 1
499 endif
500
501end Function pin_fdeval
502
503Integer Function pin_solution( XVAL, XMAR, XBAS, XSTA, YVAL, YMAR, YBAS, YSTA, N, M, USRMEM )
504#ifdef dec_directives_win32
505!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Pin_Solution
506#endif
507!
508! Specialized solution callback routine with names for variables and constraints
509!
510 Use proginfo
511 Use data_t
512 IMPLICIT NONE
513 INTEGER, Intent(IN) :: n, m
514 INTEGER, Intent(IN), Dimension(N) :: xbas, xsta
515 INTEGER, Intent(IN), Dimension(M) :: ybas, ysta
516 real*8, Intent(IN), Dimension(N) :: xval, xmar
517 real*8, Intent(IN), Dimension(M) :: yval, ymar
518 real*8, Intent(IN OUT) :: usrmem(*)
519 character*6, parameter, dimension(7) :: vname = (/'td ','cs ','s ','d ','r ','p ','rev '/)
520 character*6, parameter, dimension(6) :: ename = (/'tddef ','sdef ','csdef ','ddef ','rdef ','revdef'/)
521
522 INTEGER :: i, it, i1
523 CHARACTER*5, Parameter, Dimension(4) :: stat = (/ 'Lower','Upper','Basic','Super' /)
524
525 WRITE(10,"(/' Variable Solution value Reduced cost B-stat'/)")
526 i = 0
527 do it = 1, t
528 DO i1 = 1, 7
529 i = i + 1
530 WRITE(10,"(1X,A6,i2,1p,E20.6,E16.6,4X,A5 )") vname(i1), it, xval(i), xmar(i), stat(1+xbas(i))
531 ENDDO
532 enddo
533
534 WRITE(10,"(/' Constrnt Activity level Marginal cost B-stat'/)")
535 i = 1
536 WRITE(10,"(1x,'Objective',1P,E19.6,E16.6,4X,A5 )") yval(i), ymar(i), stat(1+ybas(i))
537 do it = 1, t
538 do i1 = 1, 6
539 i = i + 1
540 WRITE(10,"(1x,A6,i2,1P,E20.6,E16.6,4X,A5 )") ename(i1),it, yval(i), ymar(i), stat(1+ybas(i))
541 enddo
542 ENDDO
543
544 solcalls = solcalls + 1
545 pin_solution = 0
546
547END Function pin_solution
548
integer function std_status(modsta, solsta, iter, objval, usrmem)
Definition comdecl.f90:126
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
Definition comdecl.f90:243
integer function std_triord(mode, type, status, irow, icol, inf, value, resid, usrmem)
Definition comdecl.f90:327
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
Definition comdecl.f90:286
integer function pin_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
Definition fvboth.f90:429
integer function pin_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
Definition fvboth.f90:161
integer function pin_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
Definition fvboth.f90:535
integer(c_int) function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
Definition conopt.f90:1265
integer(c_int) function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
Definition conopt.f90:1238
integer(c_int) function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
Definition conopt.f90:1212
integer(c_int) function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
Definition conopt.f90:1111
integer(c_int) function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
Definition conopt.f90:1291
integer(c_int) function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
Definition conopt.f90:1135
integer(c_int) function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
Definition conopt.f90:928
integer(c_int) function coidef_triord(cntvect, coi_triord)
define callback routine for providing the triangular order information.
Definition conopt.f90:1371
integer(c_int) function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
Definition conopt.f90:293
integer(c_int) function coidef_square(cntvect, square)
square models.
Definition conopt.f90:447
integer(c_int) function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
Definition conopt.f90:97
integer(c_int) function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
Definition conopt.f90:121
integer(c_int) function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
Definition conopt.f90:167
integer(c_int) function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
Definition conopt.f90:213
integer(c_int) function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
Definition conopt.f90:144
integer(c_int) function coidef_objcon(cntvect, objcon)
defines the Objective Constraint.
Definition conopt.f90:239
integer(c_int) function coi_create(cntvect)
initializes CONOPT and creates the control vector.
Definition conopt.f90:1726
integer(c_int) function coi_free(cntvect)
frees the control vector.
Definition conopt.f90:1749
integer(c_int) function coi_solve(cntvect)
method for starting the solving process of CONOPT.
Definition conopt.f90:1625
integer solcalls
Definition comdecl.f90:15
integer sstat
Definition comdecl.f90:18
subroutine finalize
Definition comdecl.f90:79
integer stacalls
Definition comdecl.f90:14
subroutine flog(msg, code)
Definition comdecl.f90:62
integer mstat
Definition comdecl.f90:17
subroutine startup
Definition comdecl.f90:41
program pinsquare
Main program. A simple setup and call of CONOPT.
Definition pinsquare.f90:26