13sys.path.append(
'../common/')
32 adding the variables and constraints to the model
33 @ingroup PYTHON1THREAD_QP1
36 for i
in range(self.
NN):
41 varidx = list(range(self.
NN))
44 self.
addConstraint(pyconopt.ConstraintType_Free, 0.0, varidx, zeros,
48 self.
addConstraint(pyconopt.ConstraintType_Eq, 1.0, varidx, ones,
60 @ingroup PYTHON1THREAD_QP1
66 g += sum([(x[i] - self.
target[i])*q*(x[i] - self.
target[i])
67 for i, q
in enumerate(self.
Qdiag)])
68 g += 2*sum([(x[i + 1] - self.
target[i + 1])*q*(x[i] - self.
target[i])
75 @ingroup PYTHON1THREAD_QP1
79 for i
in range(self.
NN):
88if __name__ ==
"__main__":
89 name = os.path.basename(__file__)[:-3]
97 conopt.loadModel(model)
98 conopt.setMessageHandler(msghdlr)
101 license_int_1 = os.environ.get(
'LICENSE_INT_1',
None)
102 license_int_2 = os.environ.get(
'LICENSE_INT_2',
None)
103 license_int_3 = os.environ.get(
'LICENSE_INT_3',
None)
104 license_text = os.environ.get(
'LICENSE_TEXT',
None)
105 if license_int_1
is not None and license_int_2
is not None \
106 and license_int_3
is not None and license_text
is not None:
107 conopt.setLicense(int(license_int_1), int(license_int_2),
108 int(license_int_3), license_text)
110 coi_error = conopt.solve()
setOptimizationSense(self, sense)
sets the optimisation direction.
setObjectiveElement(self, elem, elemindex)
sets the index for the objective variable or constraint
addVariable(self, *args)
Overload 1: adds a variable to the model.
addConstraint(self, *args)
Overload 1: adds a constraint to the problem.
A class that can be extended to build and solve a model using Conopt.
static int checkSolve(String name, int model_status, int solution_status, double objective, double expected_objective, double tol)
evaluateNonlinearJacobian(self, x, rowno, jacnum, ignerr, thread)
callback method for evaluating the jacobian for the nonlinear terms in a given row
evaluateNonlinearTerm(self, x, rowno, ignerr, thread)
callback method for evaluating the nonlinear terms in a given row
buildModel(self)
adding the variables and constraints to the model