44 INTEGER :: numcallback
45 INTEGER,
Dimension(:),
Pointer :: cntvect
78 Allocate( cntvect(numcallback) )
85 coi_error = max( coi_error,
coidef_numnz( cntvect, 2*nn ) )
91 coi_error = max( coi_error,
coidef_optfile( cntvect,
'sqp1.opt' ) )
104#if defined(LICENSE_INT_1) && defined(LICENSE_INT_2) && defined(LICENSE_INT_3) && defined(LICENSE_TEXT)
105 coi_error = max( coi_error,
coidef_license( cntvect, license_int_1, license_int_2, license_int_3, license_text) )
108 If ( coi_error .ne. 0 )
THEN
110 write(*,*)
'**** Fatal Error while loading CONOPT Callback routines.'
112 call flog(
"Skipping Solve due to setup errors", 1 )
120 write(*,*)
'End of SQP example 1 case 1. Return code=',coi_error
122 If ( coi_error /= 0 )
then
123 call flog(
"Errors encountered during solution of case 1", 1 )
125 call flog(
"Status or Solution routine was not called in case 1", 1 )
127 call flog(
"Solver and Model Status was not as expected (1,2) in case 1", 1 )
142 write(*,*)
'End of SQP example 1 case 2. Return code=',coi_error
144 If ( coi_error /= 0 )
then
145 call flog(
"Errors encountered during solution of case 2", 1 )
147 call flog(
"Status or Solution routine was not called in case 2", 1 )
149 call flog(
"Solver and Model Status was not as expected (1,2) in case 2", 1 )
164 write(*,*)
'End of SQP example 1 case 3. Return code=',coi_error
166 If ( coi_error /= 0 )
then
167 call flog(
"Errors encountered during solution of case 3", 1 )
169 call flog(
"Status or Solution routine was not called in case 3", 1 )
171 call flog(
"Solver and Model Status was not as expected (1,2) in case 3", 1 )
174 if ( coi_free(cntvect) /= 0 )
call flog(
"Error while freeing control vector",1)
176 call flog(
"Successful Solve", 0 )
188 colsta, rowno, value, nlflag, n, m, nz, &
195 integer,
intent (in) :: n
196 integer,
intent (in) :: m
197 integer,
intent (in) :: nz
198 real*8,
intent (in out),
dimension(n) :: lower
199 real*8,
intent (in out),
dimension(n) :: curr
200 real*8,
intent (in out),
dimension(n) :: upper
201 integer,
intent (in out),
dimension(n) :: vsta
203 integer,
intent (out),
dimension(m) ::
type
204 integer,
intent (in out),
dimension(m) :: esta
206 real*8,
intent (in out),
dimension(m) :: rhs
207 integer,
intent (in out),
dimension(n+1) :: colsta
208 integer,
intent (out),
dimension(nz) :: rowno
209 integer,
intent (in out),
dimension(nz) :: nlflag
210 real*8,
intent (in out),
dimension(nz) ::
value
279Integer Function qp_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
280 n, nz, thread, usrmem )
286 integer,
intent (in) :: n
287 integer,
intent (in) :: rowno
288 integer,
intent (in) :: nz
289 real*8,
intent (in),
dimension(n) :: x
290 real*8,
intent (in out) :: g
291 real*8,
intent (in out),
dimension(n) :: jac
292 integer,
intent (in),
dimension(nz) :: jcnm
294 integer,
intent (in) :: mode
296 integer,
intent (in) :: ignerr
298 integer,
intent (in out) :: errcnt
300 integer,
intent (in) :: thread
307 if ( rowno .eq. 1 )
then
311 if ( mode .eq. 1 .or. mode .eq. 3 )
then
317 sum = sum + (x(i)-target(i))*q(k)*(x(j)-target(j)) / 2.d0
319 sum = sum + (x(i)-target(i))*q(k)*(x(j)-target(j))
327 if ( mode .eq. 2 .or. mode .eq. 3 )
then
335 jac(i) = jac(i) + q(k) * (x(i)-target(i))
337 jac(i) = jac(i) + q(k) * (x(j)-target(j))
338 jac(j) = jac(j) + q(k) * (x(i)-target(i))
354Integer Function qp_2dlagrstr( ROWNO, COLNO, NODRV, N, M, NHESS, USRMEM )
360 INTEGER n, m, nhess, nodrv
362 INTEGER rowno(nhess), colno(nhess)
378Integer Function qp_2dlagrval( X, U, ROWNO, COLNO, VALUE, NODRV, N, M, NHESS, USRMEM )
384 INTEGER n, m, nhess, nodrv
385 real*8 x(n), u(m), value(nhess), usrmem(*)
386 INTEGER rowno(nhess), colno(nhess)
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
integer function std_status(modsta, solsta, iter, objval, usrmem)
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
integer function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
integer function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
integer function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
integer function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
integer function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
integer function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
integer function coidef_2dlagrstr(cntvect, coi_2dlagrstr)
define callback routine for providing the structure of the second derivatives of the Lagrangian.
integer function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
integer function coidef_2dlagrval(cntvect, coi_2dlagrval)
define callback routine for computing the values of the second derivatives of the Lagrangian.
integer function coidef_hessfac(cntvect, hessfac)
factor for Hessian density relative to Jacobian density HessFac.
integer function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
integer function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
integer function coidef_objcon(cntvect, objcon)
defines the Objective Constraint.
integer function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
integer function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
integer function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
integer function coidef_numhess(cntvect, numhess)
defines the Number of Hessian Nonzeros.
integer function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
integer function coidef_size()
returns the size the Control Vector must have, measured in standard Integer units.
integer function coidef_inifort(cntvect)
initialisation method for Fortran applications.
integer function coi_solve(cntvect)
method for starting the solving process of CONOPT.
subroutine flog(msg, code)
program qp
Main program. A simple setup and call of CONOPT for a QP model.
integer function qp_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
integer function qp_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
integer function qp_2dlagrval(x, u, rowno, colno, value, nodrv, n, m, nhess, usrmem)
Compute the Lagrangian of the Hessian.
integer function qp_2dlagrstr(rowno, colno, nodrv, n, m, nhess, usrmem)
Specify the structure of the Lagrangian of the Hessian.