CONOPT
Loading...
Searching...
No Matches
tria01a.f90
Go to the documentation of this file.
1!> @file tria01a.f90
2!! @ingroup FORT1THREAD_EXAMPLES
3!!
4!!
5!! Similar to Tria01 except that FDEval has an error in the Rowno test
6!! and it will therefore return an error that the main program should
7!! detect.
8!!
9!! Triangular Demo model 01
10!!
11!! This is a CONOPT implementation of the GAMS model:
12!!
13!! @verbatim
14!! variable x1, x2, x3 ;
15!! equation e1, e2, e3 ;
16!!
17!! e1 .. x1 + sqr(x2) =e= 5;
18!!
19!! e2 .. 5*x2 =e= 4;
20!!
21!! e3 .. x3 =e= x2 + x1;
22!!
23!! This model is triangular and the solution is known to be unique
24!! even though it is nonlinear. x2 is determined uniquely from e2 and it
25!! is no longer variable when it is used nonlinearly in e1.
26!! CONOPT will therefore return model status = 1 or "Optimal" and
27!! not the usual model status = 2 or "Locally Optimal".
28!!
29!! model tria01 / all /;
30!!
31!! solve tria01 using nlp minimizing x3;
32!! @endverbatim
33!!
34!!
35!! For more information about the individual callbacks, please have a look at the source code.
36
37#if defined(_WIN32) && !defined(_WIN64)
38#define dec_directives_win32
39#endif
40
41!> Main program. A simple setup and call of CONOPT
42!!
43Program tria01
44
46 Use conopt
47 implicit None
48!
49! Declare the user callback routines as Integer, External:
50!
51 Integer, External :: tria_readmatrix ! Mandatory Matrix definition routine defined below
52 Integer, External :: tria_fdeval ! Function and Derivative evaluation routine
53 ! needed a nonlinear model.
54 Integer, External :: std_status ! Standard callback for displaying solution status
55 Integer, External :: std_solution ! Standard callback for displaying solution values
56 Integer, External :: std_message ! Standard callback for managing messages
57 Integer, External :: std_errmsg ! Standard callback for managing error messages
58#ifdef dec_directives_win32
59!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
60!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
61!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Status
62!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Solution
63!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Message
64!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_ErrMsg
65#endif
66!
67! Control vector
68!
69 INTEGER, Dimension(:), Pointer :: cntvect
70 INTEGER :: coi_error
71
72 call startup
73!
74! Create and initialize a Control Vector
75!
76 coi_error = coi_create( cntvect )
77!
78! Tell CONOPT about the size of the model by populating the Control Vector:
79!
80 coi_error = max( coi_error, coidef_numvar( cntvect, 3 ) ) ! 3 variables
81 coi_error = max( coi_error, coidef_numcon( cntvect, 3 ) ) ! 3 constraints
82 coi_error = max( coi_error, coidef_numnz( cntvect, 6 ) ) ! 6 nonzeros in the Jacobian
83 coi_error = max( coi_error, coidef_numnlnz( cntvect, 1 ) ) ! 1 of which are nonlinear
84 coi_error = max( coi_error, coidef_optdir( cntvect, -1 ) ) ! Minimize
85 coi_error = max( coi_error, coidef_objvar( cntvect, 3 ) ) ! Objective is variable 3
86 coi_error = max( coi_error, coidef_optfile( cntvect, 'tria01a.opt' ) )
87!
88! Tell CONOPT about the callback routines:
89!
90 coi_error = max( coi_error, coidef_readmatrix( cntvect, tria_readmatrix ) )
91 coi_error = max( coi_error, coidef_fdeval( cntvect, tria_fdeval ) )
92 coi_error = max( coi_error, coidef_status( cntvect, std_status ) )
93 coi_error = max( coi_error, coidef_solution( cntvect, std_solution ) )
94 coi_error = max( coi_error, coidef_message( cntvect, std_message ) )
95 coi_error = max( coi_error, coidef_errmsg( cntvect, std_errmsg ) )
96
97#if defined(CONOPT_LICENSE_INT_1) && defined(CONOPT_LICENSE_INT_2) && defined(CONOPT_LICENSE_INT_3) && defined(CONOPT_LICENSE_TEXT)
98 coi_error = max( coi_error, coidef_license( cntvect, conopt_license_int_1, conopt_license_int_2, conopt_license_int_3, conopt_license_text) )
99#endif
100
101 If ( coi_error .ne. 0 ) THEN
102 write(*,*)
103 write(*,*) '**** Fatal Error while loading CONOPT Callback routines.'
104 write(*,*)
105 call flog( "Skipping Solve due to setup errors", 1 )
106 ENDIF
107!
108! Start CONOPT:
109!
110 coi_error = coi_solve( cntvect )
111
112 write(*,*)
113 write(*,*) 'End of Tria01a example. Return code=',coi_error
114
115 If ( coi_error /= -1 ) then
116 call flog( "The expected error return of -1 caused by FDEval was not seen", 1 )
117 endif
118
119 if ( coi_free(cntvect) /= 0 ) call flog( "Error while freeing control vector",1)
120
121 call flog( "Successful Solve", 0 )
122
123End Program tria01
124!
125! ============================================================================
126! Define information about the model:
127!
128
129!> Define information about the model
130!!
131!! @include{doc} readMatrix_params.dox
132Integer Function tria_readmatrix( lower, curr, upper, vsta, type, rhs, esta, &
133 colsta, rowno, value, nlflag, n, m, nz, &
134 usrmem )
135#ifdef dec_directives_win32
136!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
137#endif
138 implicit none
139 integer, intent (in) :: n ! number of variables
140 integer, intent (in) :: m ! number of constraints
141 integer, intent (in) :: nz ! number of nonzeros
142 real*8, intent (in out), dimension(n) :: lower ! vector of lower bounds
143 real*8, intent (in out), dimension(n) :: curr ! vector of initial values
144 real*8, intent (in out), dimension(n) :: upper ! vector of upper bounds
145 integer, intent (in out), dimension(n) :: vsta ! vector of initial variable status
146 ! (not defined here)
147 integer, intent (out), dimension(m) :: type ! vector of equation types
148 integer, intent (in out), dimension(m) :: esta ! vector of initial equation status
149 ! (not defined here)
150 real*8, intent (in out), dimension(m) :: rhs ! vector of right hand sides
151 integer, intent (in out), dimension(n+1) :: colsta ! vector with start of column indices
152 integer, intent (out), dimension(nz) :: rowno ! vector of row numbers
153 integer, intent (in out), dimension(nz) :: nlflag ! vector of nonlinearity flags
154 real*8, intent (in out), dimension(nz) :: value ! vector of matrix values
155 real*8 usrmem(*) ! optional user memory
156!
157! Information about Variables:
158! Default: Lower = -Inf, Curr = 0, and Upper = +inf.
159! Default: the status information in Vsta is not used.
160!
161! The model uses defaults
162!
163! Information about Constraints:
164! Default: Rhs = 0
165! Default: the status information in Esta and the function
166! value in FV are not used.
167! Default: Type: There is no default.
168! 0 = Equality,
169! 1 = Greater than or equal,
170! 2 = Less than or equal,
171! 3 = Non binding.
172!
173! Constraint 1: e1
174! Rhs = 5.0 and type Equality
175!
176 rhs(1) = 5.0d0
177 type(1) = 0
178!
179! Constraint 2: e2
180! Rhs = 4.0 and type Equality
181!
182 rhs(2) = 4.0d0
183 type(2) = 0
184!
185! Constraint 3: e3
186! Rhs = 0.0 and type Equality
187!
188 type(3) = 0
189!
190! Information about the Jacobian. CONOPT expects a columnwise
191! representation in Rowno, Value, Nlflag and Colsta.
192!
193! Colsta = Start of column indices (No Defaults):
194! Rowno = Row indices
195! Value = Value of derivative (by default only linear
196! derivatives are used)
197! Nlflag = 0 for linear and 1 for nonlinear derivative
198! (not needed for completely linear models)
199!
200! Indices
201! x(1) x(2) x(3)
202! 1: 1 3
203! 2: 4
204! 3: 2 5 6
205!
206 colsta(1) = 1
207 colsta(2) = 3
208 colsta(3) = 6
209 colsta(4) = 7
210 rowno(1) = 1
211 rowno(2) = 3
212 rowno(3) = 1
213 rowno(4) = 2
214 rowno(5) = 3
215 rowno(6) = 3
216!
217! Nonlinearity Structure: L = 0 are linear and NL = 1 are nonlinear
218! x(1) x(2) x(3)
219! 1: L NL
220! 2: L
221! 3: L L L
222!
223 nlflag(1) = 0
224 nlflag(2) = 0
225 nlflag(3) = 1
226 nlflag(4) = 0
227 nlflag(5) = 0
228 nlflag(6) = 0
229!
230! Value (Linear only)
231! x(1) x(2) x(3)
232! 1: 1.0 NL
233! 2: 5.0
234! 3: -1.0 -1.0 1.0
235!
236 value(1) = 1.d0
237 value(2) = -1.d0
238 value(4) = 5.d0
239 value(5) = -1.d0
240 value(6) = 1.d0
242 tria_readmatrix = 0 ! Return value means OK
243
244end Function tria_readmatrix
245!
246!==========================================================================
247! Compute nonlinear terms and non-constant Jacobian elements
248!
249
250!> Compute nonlinear terms and non-constant Jacobian elements
251!!
252!! @include{doc} fdeval_params.dox
253Integer Function tria_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
254 n, nz, thread, usrmem )
255#ifdef dec_directives_win32
256!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
257#endif
258 implicit none
259 integer, intent (in) :: n ! number of variables
260 integer, intent (in) :: rowno ! number of the row to be evaluated
261 integer, intent (in) :: nz ! number of nonzeros in this row
262 real*8, intent (in), dimension(n) :: x ! vector of current solution values
263 real*8, intent (in out) :: g ! constraint value
264 real*8, intent (in out), dimension(n) :: jac ! vector of derivatives for current constraint
265 integer, intent (in), dimension(nz) :: jcnm ! list of variables that appear nonlinearly
266 ! in this row. Ffor information only.
267 integer, intent (in) :: mode ! evaluation mode: 1 = function value
268 ! 2 = derivatives, 3 = both
269 integer, intent (in) :: ignerr ! if 1 then errors can be ignored as long
270 ! as errcnt is incremented
271 integer, intent (in out) :: errcnt ! error counter to be incremented in case
272 ! of function evaluation errors.
273 integer, intent (in) :: thread
274 real*8 usrmem(*) ! optional user memory
275!
276! Row 1: e1
277!
278 if ( rowno .eq. 2 ) then ! This is an error and FDeval will return a nonzero value
279!
280! Mode = 1 or 3. G = sqr(x2)
281!
282 if ( mode .eq. 1 .or. mode .eq. 3 ) then
283 g = x(2)*x(2)
284 endif
285!
286! Mode = 2 or 3: Derivative values:
287!
288 if ( mode .eq. 2 .or. mode .eq. 3 ) then
289 jac(2) = 2.d0*x(2)
290 endif
291 tria_fdeval = 0
292!
293! Row 1 and 3: The rows are linear and will not be called
294!
295 else
296 tria_fdeval = 1
297 endif
298
299end Function tria_fdeval
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
Definition comdecl.f90:132
integer function std_status(modsta, solsta, iter, objval, usrmem)
Definition comdecl.f90:88
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
Definition comdecl.f90:205
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
Definition comdecl.f90:248
integer(c_int) function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
Definition conopt.f90:1265
integer(c_int) function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
Definition conopt.f90:1238
integer(c_int) function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
Definition conopt.f90:1212
integer(c_int) function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
Definition conopt.f90:1111
integer(c_int) function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
Definition conopt.f90:1291
integer(c_int) function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
Definition conopt.f90:1135
integer(c_int) function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
Definition conopt.f90:928
integer(c_int) function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
Definition conopt.f90:293
integer(c_int) function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
Definition conopt.f90:97
integer(c_int) function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
Definition conopt.f90:121
integer(c_int) function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
Definition conopt.f90:167
integer(c_int) function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
Definition conopt.f90:213
integer(c_int) function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
Definition conopt.f90:144
integer(c_int) function coidef_objvar(cntvect, objvar)
defines the Objective Variable.
Definition conopt.f90:257
integer(c_int) function coi_create(cntvect)
initializes CONOPT and creates the control vector.
Definition conopt.f90:1726
integer(c_int) function coi_free(cntvect)
frees the control vector.
Definition conopt.f90:1749
integer(c_int) function coi_solve(cntvect)
method for starting the solving process of CONOPT.
Definition conopt.f90:1625
subroutine flog(msg, code)
Definition comdecl.f90:62
subroutine startup
Definition comdecl.f90:41
integer function tria_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
Definition tria01.f90:253
integer function tria_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
Definition tria01.f90:136
program tria01
Main program. A simple setup and call of CONOPT.
Definition tria01.f90:41