CONOPT
Loading...
Searching...
No Matches
tria02.f90
Go to the documentation of this file.
1!> @file tria02.f90
2!! @ingroup FORT1THREAD_EXAMPLES
3!!
4!!
5!! Triangular Demo model 02
6!!
7!! This is a CONOPT implementation of the GAMS model:
8!!
9!! @verbatim
10!! variable x1, x2, x3, x4 ;
11!! equation e1, e2, e3 ;
12!!
13!! e1 .. x1 + sqr(x2) =e= 5;
14!!
15!! e2 .. 5*x2 =e= 4;
16!!
17!! e3 .. x3 =e= x2 + x1 + sqr(x4);
18!!
19!! model tria02 / all /;
20!!
21!! solve tria02 using nlp minimizing x3;
22!! @endverbatim
23!!
24!!
25!! For more information about the individual callbacks, please have a look at the source code.
26
27#if defined(_WIN32) && !defined(_WIN64)
28#define dec_directives_win32
29#endif
30
31!> Main program. A simple setup and call of CONOPT
32!!
33Program tria02
34
36 Use conopt
37 implicit None
38!
39! Declare the user callback routines as Integer, External:
40!
41 Integer, External :: tria_readmatrix ! Mandatory Matrix definition routine defined below
42 Integer, External :: tria_fdeval ! Function and Derivative evaluation routine
43 ! needed a nonlinear model.
44 Integer, External :: std_status ! Standard callback for displaying solution status
45 Integer, External :: std_solution ! Standard callback for displaying solution values
46 Integer, External :: std_message ! Standard callback for managing messages
47 Integer, External :: std_errmsg ! Standard callback for managing error messages
48#ifdef dec_directives_win32
49!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
50!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
51!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Status
52!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Solution
53!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Message
54!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_ErrMsg
55#endif
56!
57! Control vector
58!
59 INTEGER, Dimension(:), Pointer :: cntvect
60 INTEGER :: coi_error
61
62 call startup
63!
64! Create and initialize a Control Vector
65!
66 coi_error = coi_create( cntvect )
67!
68! Tell CONOPT about the size of the model by populating the Control Vector:
69!
70 coi_error = max( coi_error, coidef_numvar( cntvect, 4 ) ) ! 3 variables
71 coi_error = max( coi_error, coidef_numcon( cntvect, 3 ) ) ! 3 constraints
72 coi_error = max( coi_error, coidef_numnz( cntvect, 7 ) ) ! 6 nonzeros in the Jacobian
73 coi_error = max( coi_error, coidef_numnlnz( cntvect, 2 ) ) ! 2 of which are nonlinear
74 coi_error = max( coi_error, coidef_optdir( cntvect, -1 ) ) ! Minimize
75 coi_error = max( coi_error, coidef_objvar( cntvect, 3 ) ) ! Objective is variable 3
76 coi_error = max( coi_error, coidef_optfile( cntvect, 'tria02.opt' ) )
77!
78! Tell CONOPT about the callback routines:
79!
80 coi_error = max( coi_error, coidef_readmatrix( cntvect, tria_readmatrix ) )
81 coi_error = max( coi_error, coidef_fdeval( cntvect, tria_fdeval ) )
82 coi_error = max( coi_error, coidef_status( cntvect, std_status ) )
83 coi_error = max( coi_error, coidef_solution( cntvect, std_solution ) )
84 coi_error = max( coi_error, coidef_message( cntvect, std_message ) )
85 coi_error = max( coi_error, coidef_errmsg( cntvect, std_errmsg ) )
86
87#if defined(CONOPT_LICENSE_INT_1) && defined(CONOPT_LICENSE_INT_2) && defined(CONOPT_LICENSE_INT_3) && defined(CONOPT_LICENSE_TEXT)
88 coi_error = max( coi_error, coidef_license( cntvect, conopt_license_int_1, conopt_license_int_2, conopt_license_int_3, conopt_license_text) )
89#endif
90
91 If ( coi_error .ne. 0 ) THEN
92 write(*,*)
93 write(*,*) '**** Fatal Error while loading CONOPT Callback routines.'
94 write(*,*)
95 call flog( "Skipping Solve due to setup errors", 1 )
96 ENDIF
97!
98! Save the solution so we can check the duals:
99!
100 do_allocate = .true.
101!
102! Start CONOPT:
103!
104 coi_error = coi_solve( cntvect )
105
106 write(*,*)
107 write(*,*) 'End of Tria02 example. Return code=',coi_error
108
109 If ( coi_error /= 0 ) then
110 call flog( "Errors encountered during solution", 1 )
111 elseif ( stacalls == 0 .or. solcalls == 0 ) then
112 call flog( "Status or Solution routine was not called", 1 )
113 elseif ( sstat /= 1 .or. mstat /= 2 ) then
114 call flog( "Solver and Model Status was not as expected (1,2)", 1 )
115 elseif ( abs( obj-5.16d0 ) > 0.000001d0 ) then
116 call flog( "Incorrect objective returned", 1 )
117 Else
118 Call checkdual( 'Tria02', minimize )
119 endif
120
121 if ( coi_free(cntvect) /= 0 ) call flog( "Error while freeing control vector",1)
122
123 call flog( "Successful Solve", 0 )
124
125End Program tria02
126!
127! ============================================================================
128! Define information about the model:
129!
130
131!> Define information about the model
132!!
133!! @include{doc} readMatrix_params.dox
134Integer Function tria_readmatrix( lower, curr, upper, vsta, type, rhs, esta, &
135 colsta, rowno, value, nlflag, n, m, nz, &
136 usrmem )
137#ifdef dec_directives_win32
138!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
139#endif
140 implicit none
141 integer, intent (in) :: n ! number of variables
142 integer, intent (in) :: m ! number of constraints
143 integer, intent (in) :: nz ! number of nonzeros
144 real*8, intent (in out), dimension(n) :: lower ! vector of lower bounds
145 real*8, intent (in out), dimension(n) :: curr ! vector of initial values
146 real*8, intent (in out), dimension(n) :: upper ! vector of upper bounds
147 integer, intent (in out), dimension(n) :: vsta ! vector of initial variable status
148 ! (not defined here)
149 integer, intent (out), dimension(m) :: type ! vector of equation types
150 integer, intent (in out), dimension(m) :: esta ! vector of initial equation status
151 ! (not defined here)
152 real*8, intent (in out), dimension(m) :: rhs ! vector of right hand sides
153 integer, intent (in out), dimension(n+1) :: colsta ! vector with start of column indices
154 integer, intent (out), dimension(nz) :: rowno ! vector of row numbers
155 integer, intent (in out), dimension(nz) :: nlflag ! vector of nonlinearity flags
156 real*8, intent (in out), dimension(nz) :: value ! vector of matrix values
157 real*8 usrmem(*) ! optional user memory
158!
159! Information about Variables:
160! Default: Lower = -Inf, Curr = 0, and Upper = +inf.
161! Default: the status information in Vsta is not used.
162!
163! The model uses defaults
164!
165! Information about Constraints:
166! Default: Rhs = 0
167! Default: the status information in Esta and the function
168! value in FV are not used.
169! Default: Type: There is no default.
170! 0 = Equality,
171! 1 = Greater than or equal,
172! 2 = Less than or equal,
173! 3 = Non binding.
174!
175! Constraint 1: e1
176! Rhs = 5.0 and type Equality
177!
178 rhs(1) = 5.0d0
179 type(1) = 0
180!
181! Constraint 2: e2
182! Rhs = 4.0 and type Equality
183!
184 rhs(2) = 4.0d0
185 type(2) = 0
186!
187! Constraint 3: e3
188! Rhs = 0.0 and type Equality
189!
190 type(3) = 0
191!
192! Information about the Jacobian. CONOPT expects a columnwise
193! representation in Rowno, Value, Nlflag and Colsta.
194!
195! Colsta = Start of column indices (No Defaults):
196! Rowno = Row indices
197! Value = Value of derivative (by default only linear
198! derivatives are used)
199! Nlflag = 0 for linear and 1 for nonlinear derivative
200! (not needed for completely linear models)
201!
202! Indices
203! x(1) x(2) x(3) x(4)
204! 1: 1 3
205! 2: 4
206! 3: 2 5 6 7
207!
208 colsta(1) = 1
209 colsta(2) = 3
210 colsta(3) = 6
211 colsta(4) = 7
212 colsta(5) = 8
213 rowno(1) = 1
214 rowno(2) = 3
215 rowno(3) = 1
216 rowno(4) = 2
217 rowno(5) = 3
218 rowno(6) = 3
219 rowno(7) = 3
220!
221! Nonlinearity Structure: L = 0 are linear and NL = 1 are nonlinear
222! x(1) x(2) x(3) x(4)
223! 1: L NL
224! 2: L
225! 3: L L L NL
226!
227 nlflag(1) = 0
228 nlflag(2) = 0
229 nlflag(3) = 1
230 nlflag(4) = 0
231 nlflag(5) = 0
232 nlflag(6) = 0
233 nlflag(7) = 1
234!
235! Value (Linear only)
236! x(1) x(2) x(3) x(4)
237! 1: 1.0 NL
238! 2: 5.0
239! 3: -1.0 -1.0 1.0 NL
240!
241 value(1) = 1.d0
242 value(2) = -1.d0
243 value(4) = 5.d0
244 value(5) = -1.d0
245 value(6) = 1.d0
247 tria_readmatrix = 0 ! Return value means OK
248
249end Function tria_readmatrix
250!
251!==========================================================================
252! Compute nonlinear terms and non-constant Jacobian elements
253!
254
255!> Compute nonlinear terms and non-constant Jacobian elements
256!!
257!! @include{doc} fdeval_params.dox
258Integer Function tria_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
259 n, nz, thread, usrmem )
260#ifdef dec_directives_win32
261!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
262#endif
263 implicit none
264 integer, intent (in) :: n ! number of variables
265 integer, intent (in) :: rowno ! number of the row to be evaluated
266 integer, intent (in) :: nz ! number of nonzeros in this row
267 real*8, intent (in), dimension(n) :: x ! vector of current solution values
268 real*8, intent (in out) :: g ! constraint value
269 real*8, intent (in out), dimension(n) :: jac ! vector of derivatives for current constraint
270 integer, intent (in), dimension(nz) :: jcnm ! list of variables that appear nonlinearly
271 ! in this row. Ffor information only.
272 integer, intent (in) :: mode ! evaluation mode: 1 = function value
273 ! 2 = derivatives, 3 = both
274 integer, intent (in) :: ignerr ! if 1 then errors can be ignored as long
275 ! as errcnt is incremented
276 integer, intent (in out) :: errcnt ! error counter to be incremented in case
277 ! of function evaluation errors.
278 integer, intent (in) :: thread
279 real*8 usrmem(*) ! optional user memory
280!
281! Row 1: e1
282!
283 if ( rowno .eq. 1 ) then
284!
285! Mode = 1 or 3. G = sqr(x2)
286!
287 if ( mode .eq. 1 .or. mode .eq. 3 ) then
288 g = x(2)*x(2)
289 endif
290!
291! Mode = 2 or 3: Derivative values:
292!
293 if ( mode .eq. 2 .or. mode .eq. 3 ) then
294 jac(2) = 2.d0*x(2)
295 endif
296 tria_fdeval = 0
297!
298! Row 3: e3 .. x3 =e= x2 + x1 + sqr(x4);
299!
300 else if ( rowno == 3 ) then
301!
302! Mode = 1 or 3. G = -sqr(x4)
303!
304 if ( mode .eq. 1 .or. mode .eq. 3 ) then
305 g = -x(4)*x(4)
306 endif
307!
308! Mode = 2 or 3: Derivative values:
309!
310 if ( mode .eq. 2 .or. mode .eq. 3 ) then
311 jac(4) = -2.d0*x(4)
312 endif
313 tria_fdeval = 0
314 else
315!
316! Other rows are not nonlinear -- if called it is an error
317!
318 tria_fdeval = 1
319 endif
320
321end Function tria_fdeval
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
Definition comdecl.f90:132
integer function std_status(modsta, solsta, iter, objval, usrmem)
Definition comdecl.f90:88
subroutine checkdual(case, minmax)
Definition comdecl.f90:394
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
Definition comdecl.f90:205
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
Definition comdecl.f90:248
integer(c_int) function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
Definition conopt.f90:1265
integer(c_int) function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
Definition conopt.f90:1238
integer(c_int) function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
Definition conopt.f90:1212
integer(c_int) function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
Definition conopt.f90:1111
integer(c_int) function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
Definition conopt.f90:1291
integer(c_int) function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
Definition conopt.f90:1135
integer(c_int) function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
Definition conopt.f90:928
integer(c_int) function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
Definition conopt.f90:293
integer(c_int) function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
Definition conopt.f90:97
integer(c_int) function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
Definition conopt.f90:121
integer(c_int) function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
Definition conopt.f90:167
integer(c_int) function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
Definition conopt.f90:213
integer(c_int) function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
Definition conopt.f90:144
integer(c_int) function coidef_objvar(cntvect, objvar)
defines the Objective Variable.
Definition conopt.f90:257
integer(c_int) function coi_create(cntvect)
initializes CONOPT and creates the control vector.
Definition conopt.f90:1726
integer(c_int) function coi_free(cntvect)
frees the control vector.
Definition conopt.f90:1749
integer(c_int) function coi_solve(cntvect)
method for starting the solving process of CONOPT.
Definition conopt.f90:1625
real *8 obj
Definition comdecl.f90:16
integer solcalls
Definition comdecl.f90:15
integer sstat
Definition comdecl.f90:18
integer, parameter minimize
Definition comdecl.f90:31
integer stacalls
Definition comdecl.f90:14
subroutine flog(msg, code)
Definition comdecl.f90:62
logical do_allocate
Definition comdecl.f90:27
integer mstat
Definition comdecl.f90:17
subroutine startup
Definition comdecl.f90:41
integer function tria_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
Definition tria01.f90:253
integer function tria_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
Definition tria01.f90:136
program tria02
Main program. A simple setup and call of CONOPT.
Definition tria02.f90:35