CONOPT
Loading...
Searching...
No Matches
tria02.f90
Go to the documentation of this file.
1!> @file tria02.f90
2!! @ingroup FORT1THREAD_EXAMPLES
3!!
4!!
5!! Triangular Demo model 02
6!!
7!! This is a CONOPT implementation of the GAMS model:
8!!
9!! @verbatim
10!! variable x1, x2, x3, x4 ;
11!! equation e1, e2, e3 ;
12!!
13!! e1 .. x1 + sqr(x2) =e= 5;
14!!
15!! e2 .. 5*x2 =e= 4;
16!!
17!! e3 .. x3 =e= x2 + x1 + sqr(x4);
18!!
19!! model tria02 / all /;
20!!
21!! solve tria02 using nlp minimizing x3;
22!! @endverbatim
23!!
24!!
25!! For more information about the individual callbacks, please have a look at the source code.
26
27!> Main program. A simple setup and call of CONOPT
28!!
29Program tria02
30
31 Use proginfo
32 Use coidef
33 implicit None
34!
35! Declare the user callback routines as Integer, External:
36!
37 Integer, External :: tria_readmatrix ! Mandatory Matrix definition routine defined below
38 Integer, External :: tria_fdeval ! Function and Derivative evaluation routine
39 ! needed a nonlinear model.
40 Integer, External :: std_status ! Standard callback for displaying solution status
41 Integer, External :: std_solution ! Standard callback for displaying solution values
42 Integer, External :: std_message ! Standard callback for managing messages
43 Integer, External :: std_errmsg ! Standard callback for managing error messages
44#if defined(itl)
45!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
46!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
47!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Status
48!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Solution
49!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Message
50!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_ErrMsg
51#endif
52!
53! Control vector
54!
55 INTEGER :: numcallback
56 INTEGER, Dimension(:), Pointer :: cntvect
57 INTEGER :: coi_error
58
59 call startup
60!
61! Create and initialize a Control Vector
62!
63 numcallback = coidef_size()
64 Allocate( cntvect(numcallback) )
65 coi_error = coidef_inifort( cntvect )
66!
67! Tell CONOPT about the size of the model by populating the Control Vector:
68!
69 coi_error = max( coi_error, coidef_numvar( cntvect, 4 ) ) ! 3 variables
70 coi_error = max( coi_error, coidef_numcon( cntvect, 3 ) ) ! 3 constraints
71 coi_error = max( coi_error, coidef_numnz( cntvect, 7 ) ) ! 6 nonzeros in the Jacobian
72 coi_error = max( coi_error, coidef_numnlnz( cntvect, 2 ) ) ! 2 of which are nonlinear
73 coi_error = max( coi_error, coidef_optdir( cntvect, -1 ) ) ! Minimize
74 coi_error = max( coi_error, coidef_objvar( cntvect, 3 ) ) ! Objective is variable 3
75 coi_error = max( coi_error, coidef_optfile( cntvect, 'tria02.opt' ) )
76!
77! Tell CONOPT about the callback routines:
78!
79 coi_error = max( coi_error, coidef_readmatrix( cntvect, tria_readmatrix ) )
80 coi_error = max( coi_error, coidef_fdeval( cntvect, tria_fdeval ) )
81 coi_error = max( coi_error, coidef_status( cntvect, std_status ) )
82 coi_error = max( coi_error, coidef_solution( cntvect, std_solution ) )
83 coi_error = max( coi_error, coidef_message( cntvect, std_message ) )
84 coi_error = max( coi_error, coidef_errmsg( cntvect, std_errmsg ) )
85
86#if defined(LICENSE_INT_1) && defined(LICENSE_INT_2) && defined(LICENSE_INT_3) && defined(LICENSE_TEXT)
87 coi_error = max( coi_error, coidef_license( cntvect, license_int_1, license_int_2, license_int_3, license_text) )
88#endif
89
90 If ( coi_error .ne. 0 ) THEN
91 write(*,*)
92 write(*,*) '**** Fatal Error while loading CONOPT Callback routines.'
93 write(*,*)
94 call flog( "Skipping Solve due to setup errors", 1 )
95 ENDIF
96!
97! Save the solution so we can check the duals:
98!
99 do_allocate = .true.
100!
101! Start CONOPT:
102!
103 coi_error = coi_solve( cntvect )
104
105 write(*,*)
106 write(*,*) 'End of Tria02 example. Return code=',coi_error
107
108 If ( coi_error /= 0 ) then
109 call flog( "Errors encountered during solution", 1 )
110 elseif ( stacalls == 0 .or. solcalls == 0 ) then
111 call flog( "Status or Solution routine was not called", 1 )
112 elseif ( sstat /= 1 .or. mstat /= 2 ) then
113 call flog( "Solver and Model Status was not as expected (1,2)", 1 )
114 elseif ( abs( obj-5.16d0 ) > 0.000001d0 ) then
115 call flog( "Incorrect objective returned", 1 )
116 Else
117 Call checkdual( 'Tria02', minimize )
118 endif
119
120 if ( coi_free(cntvect) /= 0 ) call flog( "Error while freeing control vector",1)
121
122 call flog( "Successful Solve", 0 )
123
124End Program tria02
125!
126! ============================================================================
127! Define information about the model:
128!
129
130!> Define information about the model
131!!
132!! @include{doc} readMatrix_params.dox
133Integer Function tria_readmatrix( lower, curr, upper, vsta, type, rhs, esta, &
134 colsta, rowno, value, nlflag, n, m, nz, &
135 usrmem )
136#if defined(itl)
137!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
138#endif
139 implicit none
140 integer, intent (in) :: n ! number of variables
141 integer, intent (in) :: m ! number of constraints
142 integer, intent (in) :: nz ! number of nonzeros
143 real*8, intent (in out), dimension(n) :: lower ! vector of lower bounds
144 real*8, intent (in out), dimension(n) :: curr ! vector of initial values
145 real*8, intent (in out), dimension(n) :: upper ! vector of upper bounds
146 integer, intent (in out), dimension(n) :: vsta ! vector of initial variable status
147 ! (not defined here)
148 integer, intent (out), dimension(m) :: type ! vector of equation types
149 integer, intent (in out), dimension(m) :: esta ! vector of initial equation status
150 ! (not defined here)
151 real*8, intent (in out), dimension(m) :: rhs ! vector of right hand sides
152 integer, intent (in out), dimension(n+1) :: colsta ! vector with start of column indices
153 integer, intent (out), dimension(nz) :: rowno ! vector of row numbers
154 integer, intent (in out), dimension(nz) :: nlflag ! vector of nonlinearity flags
155 real*8, intent (in out), dimension(nz) :: value ! vector of matrix values
156 real*8 usrmem(*) ! optional user memory
157!
158! Information about Variables:
159! Default: Lower = -Inf, Curr = 0, and Upper = +inf.
160! Default: the status information in Vsta is not used.
161!
162! The model uses defaults
163!
164! Information about Constraints:
165! Default: Rhs = 0
166! Default: the status information in Esta and the function
167! value in FV are not used.
168! Default: Type: There is no default.
169! 0 = Equality,
170! 1 = Greater than or equal,
171! 2 = Less than or equal,
172! 3 = Non binding.
173!
174! Constraint 1: e1
175! Rhs = 5.0 and type Equality
176!
177 rhs(1) = 5.0d0
178 type(1) = 0
179!
180! Constraint 2: e2
181! Rhs = 4.0 and type Equality
182!
183 rhs(2) = 4.0d0
184 type(2) = 0
185!
186! Constraint 3: e3
187! Rhs = 0.0 and type Equality
188!
189 type(3) = 0
190!
191! Information about the Jacobian. We use the standard method with
192! Rowno, Value, Nlflag and Colsta and we do not use Colno.
193!
194! Colsta = Start of column indices (No Defaults):
195! Rowno = Row indices
196! Value = Value of derivative (by default only linear
197! derivatives are used)
198! Nlflag = 0 for linear and 1 for nonlinear derivative
199! (not needed for completely linear models)
200!
201! Indices
202! x(1) x(2) x(3) x(4)
203! 1: 1 3
204! 2: 4
205! 3: 2 5 6 7
206!
207 colsta(1) = 1
208 colsta(2) = 3
209 colsta(3) = 6
210 colsta(4) = 7
211 colsta(5) = 8
212 rowno(1) = 1
213 rowno(2) = 3
214 rowno(3) = 1
215 rowno(4) = 2
216 rowno(5) = 3
217 rowno(6) = 3
218 rowno(7) = 3
219!
220! Nonlinearity Structure: L = 0 are linear and NL = 1 are nonlinear
221! x(1) x(2) x(3) x(4)
222! 1: L NL
223! 2: L
224! 3: L L L NL
225!
226 nlflag(1) = 0
227 nlflag(2) = 0
228 nlflag(3) = 1
229 nlflag(4) = 0
230 nlflag(5) = 0
231 nlflag(6) = 0
232 nlflag(7) = 1
233!
234! Value (Linear only)
235! x(1) x(2) x(3) x(4)
236! 1: 1.0 NL
237! 2: 5.0
238! 3: -1.0 -1.0 1.0 NL
239!
240 value(1) = 1.d0
241 value(2) = -1.d0
242 value(4) = 5.d0
243 value(5) = -1.d0
244 value(6) = 1.d0
245
246 tria_readmatrix = 0 ! Return value means OK
247
248end Function tria_readmatrix
249!
250!==========================================================================
251! Compute nonlinear terms and non-constant Jacobian elements
252!
253
254!> Compute nonlinear terms and non-constant Jacobian elements
255!!
256!! @include{doc} fdeval_params.dox
257Integer Function tria_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
258 n, nz, thread, usrmem )
259#if defined(itl)
260!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
261#endif
262 implicit none
263 integer, intent (in) :: n ! number of variables
264 integer, intent (in) :: rowno ! number of the row to be evaluated
265 integer, intent (in) :: nz ! number of nonzeros in this row
266 real*8, intent (in), dimension(n) :: x ! vector of current solution values
267 real*8, intent (in out) :: g ! constraint value
268 real*8, intent (in out), dimension(n) :: jac ! vector of derivatives for current constraint
269 integer, intent (in), dimension(nz) :: jcnm ! list of variables that appear nonlinearly
270 ! in this row. Ffor information only.
271 integer, intent (in) :: mode ! evaluation mode: 1 = function value
272 ! 2 = derivatives, 3 = both
273 integer, intent (in) :: ignerr ! if 1 then errors can be ignored as long
274 ! as errcnt is incremented
275 integer, intent (in out) :: errcnt ! error counter to be incremented in case
276 ! of function evaluation errors.
277 integer, intent (in) :: thread
278 real*8 usrmem(*) ! optional user memory
279!
280! Row 1: e1
281!
282 if ( rowno .eq. 1 ) then
283!
284! Mode = 1 or 3. G = sqr(x2)
285!
286 if ( mode .eq. 1 .or. mode .eq. 3 ) then
287 g = x(2)*x(2)
288 endif
289!
290! Mode = 2 or 3: Derivative values:
291!
292 if ( mode .eq. 2 .or. mode .eq. 3 ) then
293 jac(2) = 2.d0*x(2)
294 endif
295 tria_fdeval = 0
296!
297! Row 3: e3 .. x3 =e= x2 + x1 + sqr(x4);
298!
299 else if ( rowno == 3 ) then
300!
301! Mode = 1 or 3. G = -sqr(x4)
302!
303 if ( mode .eq. 1 .or. mode .eq. 3 ) then
304 g = -x(4)*x(4)
305 endif
306!
307! Mode = 2 or 3: Derivative values:
308!
309 if ( mode .eq. 2 .or. mode .eq. 3 ) then
310 jac(4) = -2.d0*x(4)
311 endif
312 tria_fdeval = 0
313 else
314!
315! Other rows are not nonlinear -- if called it is an error
316!
317 tria_fdeval = 1
318 endif
319
320end Function tria_fdeval
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
Definition comdecl.f90:128
integer function std_status(modsta, solsta, iter, objval, usrmem)
Definition comdecl.f90:82
subroutine checkdual(case, minmax)
Definition comdecl.f90:365
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
Definition comdecl.f90:203
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
Definition comdecl.f90:248
integer function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
integer function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
integer function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
integer function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
integer function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
integer function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
integer function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
integer function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
Definition coistart.f90:680
integer function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
Definition coistart.f90:358
integer function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
Definition coistart.f90:437
integer function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
Definition coistart.f90:552
integer function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
Definition coistart.f90:476
integer function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
Definition coistart.f90:398
integer function coidef_objvar(cntvect, objvar)
defines the Objective Variable.
Definition coistart.f90:586
integer function coidef_size()
returns the size the Control Vector must have, measured in standard Integer units.
Definition coistart.f90:176
integer function coidef_inifort(cntvect)
initialisation method for Fortran applications.
Definition coistart.f90:314
integer function coi_solve(cntvect)
method for starting the solving process of CONOPT.
Definition coistart.f90:14
real *8 obj
Definition comdecl.f90:10
integer solcalls
Definition comdecl.f90:9
integer sstat
Definition comdecl.f90:12
integer, parameter minimize
Definition comdecl.f90:25
integer stacalls
Definition comdecl.f90:8
subroutine flog(msg, code)
Definition comdecl.f90:56
logical do_allocate
Definition comdecl.f90:21
integer mstat
Definition comdecl.f90:11
subroutine startup
Definition comdecl.f90:35
integer function tria_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
Definition tria01.f90:265
integer function tria_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
Definition tria01.f90:145
program tria02
Main program. A simple setup and call of CONOPT.
Definition tria02.f90:29