CONOPT
Loading...
Searching...
No Matches
triabad01.f90
Go to the documentation of this file.
1!> @file triabad01.f90
2!! @ingroup FORT1THREAD_EXAMPLES
3!!
4!!
5!! This is a CONOPT implementation of the GAMS model:
6!!
7!! @verbatim
8!! variable x1, x2, x3;
9!! equation e1, e2, e3, e4, e5;
10!!
11!! e1 .. sqr(x1) =E= 1;
12!! e2 .. sqr(x2) =E= 1;
13!! e3 .. sqr(x1) + x2 =E= 3;
14!! e4 .. sqr(x1) + x2 =E= 3.5;
15!! e5 .. x3 =E= sqr(x1 + x2);
16!!
17!! x1.l = 0.99;
18!! x2.l = 0.7;
19!!
20!! model m / all /;
21!! solve m using nlp maximizing x3;
22!! @endverbatim
23!!
24!! The model is infeasible because e3 and e4 are inconsistent with e1
25!! and e2.
26!!
27!!
28!! For more information about the individual callbacks, please have a look at the source code.
29
30#if defined(_WIN32) && !defined(_WIN64)
31#define dec_directives_win32
32#endif
33
34!> Main program. A simple setup and call of CONOPT
35!!
36Program triabad01
37
39 Use conopt
40 implicit None
41!
42! Declare the user callback routines as Integer, External:
43!
44 Integer, External :: tria_readmatrix ! Mandatory Matrix definition routine defined below
45 Integer, External :: tria_fdeval ! Function and Derivative evaluation routine
46 ! needed a nonlinear model.
47 Integer, External :: std_status ! Standard callback for displaying solution status
48 Integer, External :: std_solution ! Standard callback for displaying solution values
49 Integer, External :: std_message ! Standard callback for managing messages
50 Integer, External :: std_errmsg ! Standard callback for managing error messages
51 Integer, External :: std_triord ! Standard callback for triangular order
52#ifdef dec_directives_win32
53!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
54!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
55!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Status
56!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Solution
57!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Message
58!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_ErrMsg
59!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_TriOrd
60#endif
61!
62! Control vector
63!
64 INTEGER, Dimension(:), Pointer :: cntvect
65 INTEGER :: coi_error
66
67 call startup
68!
69! Create and initialize a Control Vector
70!
71 coi_error = coi_create( cntvect )
72!
73! Tell CONOPT about the size of the model by populating the Control Vector:
74!
75 coi_error = max( coi_error, coidef_numvar( cntvect, 3 ) ) ! # variables
76 coi_error = max( coi_error, coidef_numcon( cntvect, 5 ) ) ! # constraints
77 coi_error = max( coi_error, coidef_numnz( cntvect, 9 ) ) ! # nonzeros in the Jacobian
78 coi_error = max( coi_error, coidef_numnlnz( cntvect, 6 ) ) ! # of which are nonlinear
79 coi_error = max( coi_error, coidef_optdir( cntvect, -1 ) ) ! Minimize
80 coi_error = max( coi_error, coidef_objvar( cntvect, 3 ) ) ! Objective is variable 3
81 coi_error = max( coi_error, coidef_optfile( cntvect, 'triabad01.opt' ) )
82!
83! Tell CONOPT about the callback routines:
84!
85 coi_error = max( coi_error, coidef_readmatrix( cntvect, tria_readmatrix ) )
86 coi_error = max( coi_error, coidef_fdeval( cntvect, tria_fdeval ) )
87 coi_error = max( coi_error, coidef_status( cntvect, std_status ) )
88 coi_error = max( coi_error, coidef_solution( cntvect, std_solution ) )
89 coi_error = max( coi_error, coidef_message( cntvect, std_message ) )
90 coi_error = max( coi_error, coidef_errmsg( cntvect, std_errmsg ) )
91 coi_error = max( coi_error, coidef_triord( cntvect, std_triord ) )
92
93#if defined(CONOPT_LICENSE_INT_1) && defined(CONOPT_LICENSE_INT_2) && defined(CONOPT_LICENSE_INT_3) && defined(CONOPT_LICENSE_TEXT)
94 coi_error = max( coi_error, coidef_license( cntvect, conopt_license_int_1, conopt_license_int_2, conopt_license_int_3, conopt_license_text) )
95#endif
96
97 If ( coi_error .ne. 0 ) THEN
98 write(*,*)
99 write(*,*) '**** Fatal Error while loading CONOPT Callback routines.'
100 write(*,*)
101 call flog( "Skipping Solve due to setup errors", 1 )
102 ENDIF
103!
104! Save the solution so we can check the duals:
105!
106 do_allocate = .true.
107!
108! Start CONOPT:
109!
110 coi_error = coi_solve( cntvect )
111
112 write(*,*)
113 write(*,*) 'End of Triabad01 example. Return code=',coi_error
114
115 If ( coi_error /= 0 ) then
116 call flog( "Errors encountered during solution", 1 )
117 elseif ( stacalls == 0 .or. solcalls == 0 ) then
118 call flog( "Status or Solution routine was not called", 1 )
119 elseif ( sstat /= 1 .or. mstat /= 5 ) then
120 call flog( "Solver and Model Status was not as expected (1,5)", 1 )
121! No objective test for infeasible model
122 Else
123 Call checkdual( 'Triabad01', infeasible )
124 endif
125
126 if ( coi_free(cntvect) /= 0 ) call flog( "Error while freeing control vector",1)
127
128 call flog( "Successful Solve", 0 )
130End Program triabad01
131!
132! ============================================================================
133! Define information about the model:
134!
135
136!> Define information about the model
137!!
138!! @include{doc} readMatrix_params.dox
139Integer Function tria_readmatrix( lower, curr, upper, vsta, type, rhs, esta, &
140 colsta, rowno, value, nlflag, n, m, nz, &
141 usrmem )
142#ifdef dec_directives_win32
143!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
144#endif
145 implicit none
146 integer, intent (in) :: n ! number of variables
147 integer, intent (in) :: m ! number of constraints
148 integer, intent (in) :: nz ! number of nonzeros
149 real*8, intent (in out), dimension(n) :: lower ! vector of lower bounds
150 real*8, intent (in out), dimension(n) :: curr ! vector of initial values
151 real*8, intent (in out), dimension(n) :: upper ! vector of upper bounds
152 integer, intent (in out), dimension(n) :: vsta ! vector of initial variable status
153 ! (not defined here)
154 integer, intent (out), dimension(m) :: type ! vector of equation types
155 integer, intent (in out), dimension(m) :: esta ! vector of initial equation status
156 ! (not defined here)
157 real*8, intent (in out), dimension(m) :: rhs ! vector of right hand sides
158 integer, intent (in out), dimension(n+1) :: colsta ! vector with start of column indices
159 integer, intent (out), dimension(nz) :: rowno ! vector of row numbers
160 integer, intent (in out), dimension(nz) :: nlflag ! vector of nonlinearity flags
161 real*8, intent (in out), dimension(nz) :: value ! vector of matrix values
162 real*8 usrmem(*) ! optional user memory
163!
164! Information about Variables:
165! Default: Lower = -Inf, Curr = 0, and Upper = +inf.
166! Default: the status information in Vsta is not used.
167!
168! The model uses initial values for x1 and x2
169!
170 curr(1) = 0.99d0
171 curr(2) = 0.70d0
172!
173! Information about Constraints:
174! Default: Rhs = 0
175! Default: the status information in Esta and the function
176! value in FV are not used.
177! Default: Type: There is no default.
178! 0 = Equality,
179! 1 = Greater than or equal,
180! 2 = Less than or equal,
181! 3 = Non binding.
182!
183! Constraint 1: e1
184! Rhs = 1.0 and type Equality
185!
186 rhs(1) = 1.0d0
187 type(1) = 0
188!
189! Constraint 2: e2
190! Rhs = 1.0 and type Equality
191!
192 rhs(2) = 1.0d0
193 type(2) = 0
194!
195! Constraint 3: e3
196! Rhs = 3.0 and type Equality
197!
198 rhs(3) = 3.0d0
199 type(3) = 0
200!
201! Constraint 4: e4
202! Rhs = 3.5 and type Equality
203!
204 rhs(4) = 3.5d0
205 type(4) = 0
206!
207! Constraint 5: e5
208! Rhs = 0.0 and type Equality
209!
210 type(5) = 0
211!
212! Information about the Jacobian. CONOPT expects a columnwise
213! representation in Rowno, Value, Nlflag and Colsta.
214!
215! Colsta = Start of column indices (No Defaults):
216! Rowno = Row indices
217! Value = Value of derivative (by default only linear
218! derivatives are used)
219! Nlflag = 0 for linear and 1 for nonlinear derivative
220! (not needed for completely linear models)
221!
222! Indices
223! x(1) x(2) x(3)
224! 1: 1
225! 2: 5
226! 3: 2 6
227! 4: 3 7
228! 5: 4 8 9
229!
230 colsta(1) = 1
231 colsta(2) = 5
232 colsta(3) = 9
233 colsta(4) = 10
234 rowno(1) = 1
235 rowno(2) = 3
236 rowno(3) = 4
237 rowno(4) = 5
238 rowno(5) = 2
239 rowno(6) = 3
240 rowno(7) = 4
241 rowno(8) = 5
242 rowno(9) = 5
243!
244! Nonlinearity Structure: L = 0 are linear and NL = 1 are nonlinear
245! x(1) x(2) x(3)
246! 1: NL
247! 2: NL
248! 3: NL L
249! 4: NL L
250! 5: NL NL L
251!
252 nlflag(1) = 1
253 nlflag(2) = 1
254 nlflag(3) = 1
255 nlflag(4) = 1
256 nlflag(5) = 1
257 nlflag(6) = 0
258 nlflag(7) = 0
259 nlflag(8) = 1
260 nlflag(9) = 0
261!
262! Value (Linear only)
263! x(1) x(2) x(3)
264! 1: NL
265! 2: NL
266! 3: NL 1.0
267! 4: NL 1.0
268! 5: NL NL 1.0
269!
270 value(6) = 1.d0
271 value(7) = 1.d0
272 value(9) = 1.d0
273
274 tria_readmatrix = 0 ! Return value means OK
275
276end Function tria_readmatrix
277!
278!==========================================================================
279! Compute nonlinear terms and non-constant Jacobian elements
280!
281
282!> Compute nonlinear terms and non-constant Jacobian elements
283!!
284!! @include{doc} fdeval_params.dox
285Integer Function tria_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
286 n, nz, thread, usrmem )
287#ifdef dec_directives_win32
288!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
289#endif
290 implicit none
291 integer, intent (in) :: n ! number of variables
292 integer, intent (in) :: rowno ! number of the row to be evaluated
293 integer, intent (in) :: nz ! number of nonzeros in this row
294 real*8, intent (in), dimension(n) :: x ! vector of current solution values
295 real*8, intent (in out) :: g ! constraint value
296 real*8, intent (in out), dimension(n) :: jac ! vector of derivatives for current constraint
297 integer, intent (in), dimension(nz) :: jcnm ! list of variables that appear nonlinearly
298 ! in this row. Ffor information only.
299 integer, intent (in) :: mode ! evaluation mode: 1 = function value
300 ! 2 = derivatives, 3 = both
301 integer, intent (in) :: ignerr ! if 1 then errors can be ignored as long
302 ! as errcnt is incremented
303 integer, intent (in out) :: errcnt ! error counter to be incremented in case
304 ! of function evaluation errors.
305 integer, intent (in) :: thread
306 real*8 usrmem(*) ! optional user memory
307!
308! Row 1: e1 .. sqr(x1) =E= 1;
309!
310 if ( rowno == 1 ) then
311!
312! Mode = 1 or 3. G = sqr(x1)
313!
314 if ( mode == 1 .or. mode == 3 ) then
315 g = x(1)*x(1)
316 endif
317!
318! Mode = 2 or 3: Derivative values:
319!
320 if ( mode .eq. 2 .or. mode .eq. 3 ) then
321 jac(1) = 2.d0*x(1)
322 endif
323 tria_fdeval = 0
324 else if ( rowno == 2 ) then
325!
326! e2 .. sqr(x2) =E= 1;
327!
328 if ( mode == 1 .or. mode == 3 ) then
329 g = x(2)*x(2)
330 endif
331 if ( mode .eq. 2 .or. mode .eq. 3 ) then
332 jac(2) = 2.d0*x(2)
333 endif
334 tria_fdeval = 0
335 else if ( rowno == 3 .or. rowno == 4 ) then
336!
337! e3 .. sqr(x1) + x2 =E= 3;
338! e4 .. sqr(x1) + x2 =E= 3.5;
339! These row have the same nonlinear term and they are implemented
340! together
341!
342 if ( mode == 1 .or. mode == 3 ) then
343 g = x(1)*x(1)
344 endif
345 if ( mode .eq. 2 .or. mode .eq. 3 ) then
346 jac(1) = 2.d0*x(1)
347 endif
348 tria_fdeval = 0
349 else if ( rowno == 5 ) then
350!
351! e5 .. x3 =E= sqr(x1 + x2);
352!
353 if ( mode == 1 .or. mode == 3 ) then
354 g = -(x(1)+x(2))*(x(1)+x(2))
355 endif
356 if ( mode .eq. 2 .or. mode .eq. 3 ) then
357 jac(1) = -2.d0*(x(1)+x(2))
358 jac(2) = jac(1)
359 endif
360 tria_fdeval = 0
361 else
362 tria_fdeval = 1
363 endif
364
365end Function tria_fdeval
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
Definition comdecl.f90:132
integer function std_status(modsta, solsta, iter, objval, usrmem)
Definition comdecl.f90:88
subroutine checkdual(case, minmax)
Definition comdecl.f90:394
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
Definition comdecl.f90:205
integer function std_triord(mode, type, status, irow, icol, inf, value, resid, usrmem)
Definition comdecl.f90:289
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
Definition comdecl.f90:248
integer(c_int) function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
Definition conopt.f90:1265
integer(c_int) function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
Definition conopt.f90:1238
integer(c_int) function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
Definition conopt.f90:1212
integer(c_int) function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
Definition conopt.f90:1111
integer(c_int) function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
Definition conopt.f90:1291
integer(c_int) function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
Definition conopt.f90:1135
integer(c_int) function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
Definition conopt.f90:928
integer(c_int) function coidef_triord(cntvect, coi_triord)
define callback routine for providing the triangular order information.
Definition conopt.f90:1371
integer(c_int) function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
Definition conopt.f90:293
integer(c_int) function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
Definition conopt.f90:97
integer(c_int) function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
Definition conopt.f90:121
integer(c_int) function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
Definition conopt.f90:167
integer(c_int) function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
Definition conopt.f90:213
integer(c_int) function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
Definition conopt.f90:144
integer(c_int) function coidef_objvar(cntvect, objvar)
defines the Objective Variable.
Definition conopt.f90:257
integer(c_int) function coi_create(cntvect)
initializes CONOPT and creates the control vector.
Definition conopt.f90:1726
integer(c_int) function coi_free(cntvect)
frees the control vector.
Definition conopt.f90:1749
integer(c_int) function coi_solve(cntvect)
method for starting the solving process of CONOPT.
Definition conopt.f90:1625
integer solcalls
Definition comdecl.f90:15
integer sstat
Definition comdecl.f90:18
integer, parameter infeasible
Definition comdecl.f90:31
integer stacalls
Definition comdecl.f90:14
subroutine flog(msg, code)
Definition comdecl.f90:62
logical do_allocate
Definition comdecl.f90:27
integer mstat
Definition comdecl.f90:17
subroutine startup
Definition comdecl.f90:41
integer function tria_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
Definition tria01.f90:253
integer function tria_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
Definition tria01.f90:136
program triabad01
Main program. A simple setup and call of CONOPT.
Definition triabad01.f90:38