CONOPT
Loading...
Searching...
No Matches
triabad01.f90
Go to the documentation of this file.
1!> @file triabad01.f90
2!! @ingroup FORT1THREAD_EXAMPLES
3!!
4!!
5!! This is a CONOPT implementation of the GAMS model:
6!!
7!! @verbatim
8!! variable x1, x2, x3;
9!! equation e1, e2, e3, e4, e5;
10!!
11!! e1 .. sqr(x1) =E= 1;
12!! e2 .. sqr(x2) =E= 1;
13!! e3 .. sqr(x1) + x2 =E= 3;
14!! e4 .. sqr(x1) + x2 =E= 3.5;
15!! e5 .. x3 =E= sqr(x1 + x2);
16!!
17!! x1.l = 0.99;
18!! x2.l = 0.7;
19!!
20!! model m / all /;
21!! solve m using nlp maximizing x3;
22!! @endverbatim
23!!
24!! The model is infeasible because e3 and e4 are inconsistent with e1
25!! and e2.
26!!
27!!
28!! For more information about the individual callbacks, please have a look at the source code.
29
30#if defined(_WIN32) && !defined(_WIN64)
31#define dec_directives_win32
32#endif
33
34!> Main program. A simple setup and call of CONOPT
35!!
36Program triabad01
37
39 Use conopt
40 implicit None
41!
42! Declare the user callback routines as Integer, External:
43!
44 Integer, External :: tria_readmatrix ! Mandatory Matrix definition routine defined below
45 Integer, External :: tria_fdeval ! Function and Derivative evaluation routine
46 ! needed a nonlinear model.
47 Integer, External :: std_status ! Standard callback for displaying solution status
48 Integer, External :: std_solution ! Standard callback for displaying solution values
49 Integer, External :: std_message ! Standard callback for managing messages
50 Integer, External :: std_errmsg ! Standard callback for managing error messages
51 Integer, External :: std_triord ! Standard callback for triangular order
52#ifdef dec_directives_win32
53!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
54!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
55!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Status
56!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Solution
57!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Message
58!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_ErrMsg
59!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_TriOrd
60#endif
61!
62! Control vector
63!
64 INTEGER, Dimension(:), Pointer :: cntvect
65 INTEGER :: coi_error
66
67 call startup
68!
69! Create and initialize a Control Vector
70!
71 coi_error = coi_create( cntvect )
72!
73! Tell CONOPT about the size of the model by populating the Control Vector:
74!
75 coi_error = max( coi_error, coidef_numvar( cntvect, 3 ) ) ! # variables
76 coi_error = max( coi_error, coidef_numcon( cntvect, 5 ) ) ! # constraints
77 coi_error = max( coi_error, coidef_numnz( cntvect, 9 ) ) ! # nonzeros in the Jacobian
78 coi_error = max( coi_error, coidef_numnlnz( cntvect, 6 ) ) ! # of which are nonlinear
79 coi_error = max( coi_error, coidef_optdir( cntvect, -1 ) ) ! Minimize
80 coi_error = max( coi_error, coidef_objvar( cntvect, 3 ) ) ! Objective is variable 3
81 coi_error = max( coi_error, coidef_optfile( cntvect, 'triabad01.opt' ) )
82!
83! Tell CONOPT about the callback routines:
84!
85 coi_error = max( coi_error, coidef_readmatrix( cntvect, tria_readmatrix ) )
86 coi_error = max( coi_error, coidef_fdeval( cntvect, tria_fdeval ) )
87 coi_error = max( coi_error, coidef_status( cntvect, std_status ) )
88 coi_error = max( coi_error, coidef_solution( cntvect, std_solution ) )
89 coi_error = max( coi_error, coidef_message( cntvect, std_message ) )
90 coi_error = max( coi_error, coidef_errmsg( cntvect, std_errmsg ) )
91 coi_error = max( coi_error, coidef_triord( cntvect, std_triord ) )
92
93#if defined(CONOPT_LICENSE_INT_1) && defined(CONOPT_LICENSE_INT_2) && defined(CONOPT_LICENSE_INT_3) && defined(CONOPT_LICENSE_TEXT)
94 coi_error = max( coi_error, coidef_license( cntvect, conopt_license_int_1, conopt_license_int_2, conopt_license_int_3, conopt_license_text) )
95#endif
96
97 If ( coi_error .ne. 0 ) THEN
98 write(*,*)
99 write(*,*) '**** Fatal Error while loading CONOPT Callback routines.'
100 write(*,*)
101 call flog( "Skipping Solve due to setup errors", 1 )
102 ENDIF
103!
104! Save the solution so we can check the duals:
105!
106 do_allocate = .true.
107!
108! Start CONOPT:
109!
110 coi_error = coi_solve( cntvect )
111
112 write(*,*)
113 write(*,*) 'End of Triabad01 example. Return code=',coi_error
114
115 If ( coi_error /= 0 ) then
116 call flog( "Errors encountered during solution", 1 )
117 elseif ( stacalls == 0 .or. solcalls == 0 ) then
118 call flog( "Status or Solution routine was not called", 1 )
119 elseif ( sstat /= 1 .or. mstat /= 5 ) then
120 call flog( "Solver and Model Status was not as expected (1,5)", 1 )
121! No objective test for infeasible model
122 Else
123 Call checkdual( 'Triabad01', infeasible )
124 endif
125
126 if ( coi_free(cntvect) /= 0 ) call flog( "Error while freeing control vector",1)
127
128 call flog( "Successful Solve", 0 )
129!
130! Free solution memory
131!
132 call finalize
134End Program triabad01
135!
136! ============================================================================
137! Define information about the model:
138!
139
140!> Define information about the model
141!!
142!! @include{doc} readMatrix_params.dox
143Integer Function tria_readmatrix( lower, curr, upper, vsta, type, rhs, esta, &
144 colsta, rowno, value, nlflag, n, m, nz, &
145 usrmem )
146#ifdef dec_directives_win32
147!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
148#endif
149 implicit none
150 integer, intent (in) :: n ! number of variables
151 integer, intent (in) :: m ! number of constraints
152 integer, intent (in) :: nz ! number of nonzeros
153 real*8, intent (in out), dimension(n) :: lower ! vector of lower bounds
154 real*8, intent (in out), dimension(n) :: curr ! vector of initial values
155 real*8, intent (in out), dimension(n) :: upper ! vector of upper bounds
156 integer, intent (in out), dimension(n) :: vsta ! vector of initial variable status
157 ! (not defined here)
158 integer, intent (out), dimension(m) :: type ! vector of equation types
159 integer, intent (in out), dimension(m) :: esta ! vector of initial equation status
160 ! (not defined here)
161 real*8, intent (in out), dimension(m) :: rhs ! vector of right hand sides
162 integer, intent (in out), dimension(n+1) :: colsta ! vector with start of column indices
163 integer, intent (out), dimension(nz) :: rowno ! vector of row numbers
164 integer, intent (in out), dimension(nz) :: nlflag ! vector of nonlinearity flags
165 real*8, intent (in out), dimension(nz) :: value ! vector of matrix values
166 real*8 usrmem(*) ! optional user memory
167!
168! Information about Variables:
169! Default: Lower = -Inf, Curr = 0, and Upper = +inf.
170! Default: the status information in Vsta is not used.
171!
172! The model uses initial values for x1 and x2
173!
174 curr(1) = 0.99d0
175 curr(2) = 0.70d0
176!
177! Information about Constraints:
178! Default: Rhs = 0
179! Default: the status information in Esta and the function
180! value in FV are not used.
181! Default: Type: There is no default.
182! 0 = Equality,
183! 1 = Greater than or equal,
184! 2 = Less than or equal,
185! 3 = Non binding.
186!
187! Constraint 1: e1
188! Rhs = 1.0 and type Equality
189!
190 rhs(1) = 1.0d0
191 type(1) = 0
192!
193! Constraint 2: e2
194! Rhs = 1.0 and type Equality
195!
196 rhs(2) = 1.0d0
197 type(2) = 0
198!
199! Constraint 3: e3
200! Rhs = 3.0 and type Equality
201!
202 rhs(3) = 3.0d0
203 type(3) = 0
204!
205! Constraint 4: e4
206! Rhs = 3.5 and type Equality
207!
208 rhs(4) = 3.5d0
209 type(4) = 0
210!
211! Constraint 5: e5
212! Rhs = 0.0 and type Equality
213!
214 type(5) = 0
215!
216! Information about the Jacobian. CONOPT expects a columnwise
217! representation in Rowno, Value, Nlflag and Colsta.
218!
219! Colsta = Start of column indices (No Defaults):
220! Rowno = Row indices
221! Value = Value of derivative (by default only linear
222! derivatives are used)
223! Nlflag = 0 for linear and 1 for nonlinear derivative
224! (not needed for completely linear models)
225!
226! Indices
227! x(1) x(2) x(3)
228! 1: 1
229! 2: 5
230! 3: 2 6
231! 4: 3 7
232! 5: 4 8 9
233!
234 colsta(1) = 1
235 colsta(2) = 5
236 colsta(3) = 9
237 colsta(4) = 10
238 rowno(1) = 1
239 rowno(2) = 3
240 rowno(3) = 4
241 rowno(4) = 5
242 rowno(5) = 2
243 rowno(6) = 3
244 rowno(7) = 4
245 rowno(8) = 5
246 rowno(9) = 5
247!
248! Nonlinearity Structure: L = 0 are linear and NL = 1 are nonlinear
249! x(1) x(2) x(3)
250! 1: NL
251! 2: NL
252! 3: NL L
253! 4: NL L
254! 5: NL NL L
255!
256 nlflag(1) = 1
257 nlflag(2) = 1
258 nlflag(3) = 1
259 nlflag(4) = 1
260 nlflag(5) = 1
261 nlflag(6) = 0
262 nlflag(7) = 0
263 nlflag(8) = 1
264 nlflag(9) = 0
265!
266! Value (Linear only)
267! x(1) x(2) x(3)
268! 1: NL
269! 2: NL
270! 3: NL 1.0
271! 4: NL 1.0
272! 5: NL NL 1.0
273!
274 value(6) = 1.d0
275 value(7) = 1.d0
276 value(9) = 1.d0
277
278 tria_readmatrix = 0 ! Return value means OK
279
280end Function tria_readmatrix
281!
282!==========================================================================
283! Compute nonlinear terms and non-constant Jacobian elements
284!
285
286!> Compute nonlinear terms and non-constant Jacobian elements
287!!
288!! @include{doc} fdeval_params.dox
289Integer Function tria_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
290 n, nz, thread, usrmem )
291#ifdef dec_directives_win32
292!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
293#endif
294 implicit none
295 integer, intent (in) :: n ! number of variables
296 integer, intent (in) :: rowno ! number of the row to be evaluated
297 integer, intent (in) :: nz ! number of nonzeros in this row
298 real*8, intent (in), dimension(n) :: x ! vector of current solution values
299 real*8, intent (in out) :: g ! constraint value
300 real*8, intent (in out), dimension(n) :: jac ! vector of derivatives for current constraint
301 integer, intent (in), dimension(nz) :: jcnm ! list of variables that appear nonlinearly
302 ! in this row. Ffor information only.
303 integer, intent (in) :: mode ! evaluation mode: 1 = function value
304 ! 2 = derivatives, 3 = both
305 integer, intent (in) :: ignerr ! if 1 then errors can be ignored as long
306 ! as errcnt is incremented
307 integer, intent (in out) :: errcnt ! error counter to be incremented in case
308 ! of function evaluation errors.
309 integer, intent (in) :: thread
310 real*8 usrmem(*) ! optional user memory
311!
312! Row 1: e1 .. sqr(x1) =E= 1;
313!
314 if ( rowno == 1 ) then
315!
316! Mode = 1 or 3. G = sqr(x1)
317!
318 if ( mode == 1 .or. mode == 3 ) then
319 g = x(1)*x(1)
320 endif
321!
322! Mode = 2 or 3: Derivative values:
323!
324 if ( mode .eq. 2 .or. mode .eq. 3 ) then
325 jac(1) = 2.d0*x(1)
326 endif
327 tria_fdeval = 0
328 else if ( rowno == 2 ) then
329!
330! e2 .. sqr(x2) =E= 1;
331!
332 if ( mode == 1 .or. mode == 3 ) then
333 g = x(2)*x(2)
334 endif
335 if ( mode .eq. 2 .or. mode .eq. 3 ) then
336 jac(2) = 2.d0*x(2)
337 endif
338 tria_fdeval = 0
339 else if ( rowno == 3 .or. rowno == 4 ) then
340!
341! e3 .. sqr(x1) + x2 =E= 3;
342! e4 .. sqr(x1) + x2 =E= 3.5;
343! These row have the same nonlinear term and they are implemented
344! together
345!
346 if ( mode == 1 .or. mode == 3 ) then
347 g = x(1)*x(1)
348 endif
349 if ( mode .eq. 2 .or. mode .eq. 3 ) then
350 jac(1) = 2.d0*x(1)
351 endif
352 tria_fdeval = 0
353 else if ( rowno == 5 ) then
354!
355! e5 .. x3 =E= sqr(x1 + x2);
356!
357 if ( mode == 1 .or. mode == 3 ) then
358 g = -(x(1)+x(2))*(x(1)+x(2))
359 endif
360 if ( mode .eq. 2 .or. mode .eq. 3 ) then
361 jac(1) = -2.d0*(x(1)+x(2))
362 jac(2) = jac(1)
363 endif
364 tria_fdeval = 0
365 else
366 tria_fdeval = 1
367 endif
368
369end Function tria_fdeval
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
Definition comdecl.f90:170
integer function std_status(modsta, solsta, iter, objval, usrmem)
Definition comdecl.f90:126
subroutine checkdual(case, minmax)
Definition comdecl.f90:432
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
Definition comdecl.f90:243
integer function std_triord(mode, type, status, irow, icol, inf, value, resid, usrmem)
Definition comdecl.f90:327
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
Definition comdecl.f90:286
integer(c_int) function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
Definition conopt.f90:1265
integer(c_int) function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
Definition conopt.f90:1238
integer(c_int) function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
Definition conopt.f90:1212
integer(c_int) function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
Definition conopt.f90:1111
integer(c_int) function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
Definition conopt.f90:1291
integer(c_int) function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
Definition conopt.f90:1135
integer(c_int) function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
Definition conopt.f90:928
integer(c_int) function coidef_triord(cntvect, coi_triord)
define callback routine for providing the triangular order information.
Definition conopt.f90:1371
integer(c_int) function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
Definition conopt.f90:293
integer(c_int) function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
Definition conopt.f90:97
integer(c_int) function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
Definition conopt.f90:121
integer(c_int) function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
Definition conopt.f90:167
integer(c_int) function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
Definition conopt.f90:213
integer(c_int) function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
Definition conopt.f90:144
integer(c_int) function coidef_objvar(cntvect, objvar)
defines the Objective Variable.
Definition conopt.f90:257
integer(c_int) function coi_create(cntvect)
initializes CONOPT and creates the control vector.
Definition conopt.f90:1726
integer(c_int) function coi_free(cntvect)
frees the control vector.
Definition conopt.f90:1749
integer(c_int) function coi_solve(cntvect)
method for starting the solving process of CONOPT.
Definition conopt.f90:1625
integer solcalls
Definition comdecl.f90:15
integer sstat
Definition comdecl.f90:18
subroutine finalize
Definition comdecl.f90:79
integer, parameter infeasible
Definition comdecl.f90:31
integer stacalls
Definition comdecl.f90:14
subroutine flog(msg, code)
Definition comdecl.f90:62
logical do_allocate
Definition comdecl.f90:27
integer mstat
Definition comdecl.f90:17
subroutine startup
Definition comdecl.f90:41
integer function tria_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
Definition tria01.f90:257
integer function tria_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
Definition tria01.f90:140
program triabad01
Main program. A simple setup and call of CONOPT.
Definition triabad01.f90:38