CONOPT
Loading...
Searching...
No Matches
triabad02.f90
Go to the documentation of this file.
1!> @file triabad02.f90
2!! @ingroup FORT1THREAD_EXAMPLES
3!!
4!!
5!! Similar to triabad01, but this time e2 will converge to a point with
6!! a bad pivot. This is not useful.
7!!
8!! @verbatim
9!! variable x1, x2, x3;
10!! equation e1, e2, e3, e4, e5;
11!!
12!! e1 .. sqr(x1) =E= 1;
13!! e2 .. sqr(x2) =E= 0;
14!! e3 .. sqr(x1) + x2 =E= 3;
15!! e4 .. sqr(x1) + x2 =E= 3.5;
16!! e5 .. x3 =E= sqr(x1 + x2);
17!!
18!! x1.l = 0.99;
19!! x2.l = 0.5;
20!!
21!! model m / all /;
22!! solve m using nlp maximizing x3;
23!! @endverbatim
24!!
25!!
26!! For more information about the individual callbacks, please have a look at the source code.
27
28#if defined(_WIN32) && !defined(_WIN64)
29#define dec_directives_win32
30#endif
31
32!> Main program. A simple setup and call of CONOPT
33!!
34Program triabad02
35
37 Use conopt
38 implicit None
39!
40! Declare the user callback routines as Integer, External:
41!
42 Integer, External :: tria_readmatrix ! Mandatory Matrix definition routine defined below
43 Integer, External :: tria_fdeval ! Function and Derivative evaluation routine
44 ! needed a nonlinear model.
45 Integer, External :: std_status ! Standard callback for displaying solution status
46 Integer, External :: std_solution ! Standard callback for displaying solution values
47 Integer, External :: std_message ! Standard callback for managing messages
48 Integer, External :: std_errmsg ! Standard callback for managing error messages
49 Integer, External :: std_triord ! Standard callback for triangular order
50#ifdef dec_directives_win32
51!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
52!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
53!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Status
54!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Solution
55!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Message
56!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_ErrMsg
57!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_TriOrd
58#endif
59!
60! Control vector
61!
62 INTEGER, Dimension(:), Pointer :: cntvect
63 INTEGER :: coi_error
64
65 call startup
66!
67! Create and initialize a Control Vector
68!
69 coi_error = coi_create( cntvect )
70!
71! Tell CONOPT about the size of the model by populating the Control Vector:
72!
73 coi_error = max( coi_error, coidef_numvar( cntvect, 3 ) ) ! # variables
74 coi_error = max( coi_error, coidef_numcon( cntvect, 5 ) ) ! # constraints
75 coi_error = max( coi_error, coidef_numnz( cntvect, 9 ) ) ! # nonzeros in the Jacobian
76 coi_error = max( coi_error, coidef_numnlnz( cntvect, 6 ) ) ! # of which are nonlinear
77 coi_error = max( coi_error, coidef_optdir( cntvect, -1 ) ) ! Minimize
78 coi_error = max( coi_error, coidef_objvar( cntvect, 3 ) ) ! Objective is variable 3
79 coi_error = max( coi_error, coidef_optfile( cntvect, 'triabad02.opt' ) )
80!
81! Tell CONOPT about the callback routines:
82!
83 coi_error = max( coi_error, coidef_readmatrix( cntvect, tria_readmatrix ) )
84 coi_error = max( coi_error, coidef_fdeval( cntvect, tria_fdeval ) )
85 coi_error = max( coi_error, coidef_status( cntvect, std_status ) )
86 coi_error = max( coi_error, coidef_solution( cntvect, std_solution ) )
87 coi_error = max( coi_error, coidef_message( cntvect, std_message ) )
88 coi_error = max( coi_error, coidef_errmsg( cntvect, std_errmsg ) )
89 coi_error = max( coi_error, coidef_triord( cntvect, std_triord ) )
90
91#if defined(CONOPT_LICENSE_INT_1) && defined(CONOPT_LICENSE_INT_2) && defined(CONOPT_LICENSE_INT_3) && defined(CONOPT_LICENSE_TEXT)
92 coi_error = max( coi_error, coidef_license( cntvect, conopt_license_int_1, conopt_license_int_2, conopt_license_int_3, conopt_license_text) )
93#endif
94
95 If ( coi_error .ne. 0 ) THEN
96 write(*,*)
97 write(*,*) '**** Fatal Error while loading CONOPT Callback routines.'
98 write(*,*)
99 call flog( "Skipping Solve due to setup errors", 1 )
100 ENDIF
101!
102! Save the solution so we can check the duals:
103!
104 do_allocate = .true.
105!
106! Start CONOPT:
107!
108 coi_error = coi_solve( cntvect )
109
110 write(*,*)
111 write(*,*) 'End of Triabad02 example. Return code=',coi_error
112
113 If ( coi_error /= 0 ) then
114 call flog( "Errors encountered during solution", 1 )
115 elseif ( stacalls == 0 .or. solcalls == 0 ) then
116 call flog( "Status or Solution routine was not called", 1 )
117 elseif ( sstat /= 1 .or. mstat /= 5 ) then
118 call flog( "Solver and Model Status was not as expected (1,5)", 1 )
119! No objective test for infeasible model
120 Else
121 Call checkdual( 'Triabad02', infeasible )
122 endif
123
124 if ( coi_free(cntvect) /= 0 ) call flog( "Error while freeing control vector",1)
125
126 call flog( "Successful Solve", 0 )
128End Program triabad02
129!
130! ============================================================================
131! Define information about the model:
132!
133
134!> Define information about the model
135!!
136!! @include{doc} readMatrix_params.dox
137Integer Function tria_readmatrix( lower, curr, upper, vsta, type, rhs, esta, &
138 colsta, rowno, value, nlflag, n, m, nz, &
139 usrmem )
140#ifdef dec_directives_win32
141!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
142#endif
143 implicit none
144 integer, intent (in) :: n ! number of variables
145 integer, intent (in) :: m ! number of constraints
146 integer, intent (in) :: nz ! number of nonzeros
147 real*8, intent (in out), dimension(n) :: lower ! vector of lower bounds
148 real*8, intent (in out), dimension(n) :: curr ! vector of initial values
149 real*8, intent (in out), dimension(n) :: upper ! vector of upper bounds
150 integer, intent (in out), dimension(n) :: vsta ! vector of initial variable status
151 ! (not defined here)
152 integer, intent (out), dimension(m) :: type ! vector of equation types
153 integer, intent (in out), dimension(m) :: esta ! vector of initial equation status
154 ! (not defined here)
155 real*8, intent (in out), dimension(m) :: rhs ! vector of right hand sides
156 integer, intent (in out), dimension(n+1) :: colsta ! vector with start of column indices
157 integer, intent (out), dimension(nz) :: rowno ! vector of row numbers
158 integer, intent (in out), dimension(nz) :: nlflag ! vector of nonlinearity flags
159 real*8, intent (in out), dimension(nz) :: value ! vector of matrix values
160 real*8 usrmem(*) ! optional user memory
161!
162! Information about Variables:
163! Default: Lower = -Inf, Curr = 0, and Upper = +inf.
164! Default: the status information in Vsta is not used.
165!
166! The model uses initial values for x1 and x2
167!
168 curr(1) = 0.99d0
169 curr(2) = 0.70d0
170!
171! Information about Constraints:
172! Default: Rhs = 0
173! Default: the status information in Esta and the function
174! value in FV are not used.
175! Default: Type: There is no default.
176! 0 = Equality,
177! 1 = Greater than or equal,
178! 2 = Less than or equal,
179! 3 = Non binding.
180!
181! Constraint 1: e1
182! Rhs = 1.0 and type Equality
183!
184 rhs(1) = 1.0d0
185 type(1) = 0
186!
187! Constraint 2: e2
188! Rhs = 1.0 and type Equality
189!
190 rhs(2) = 0.0d0
191 type(2) = 0
192!
193! Constraint 3: e3
194! Rhs = 3.0 and type Equality
195!
196 rhs(3) = 3.0d0
197 type(3) = 0
198!
199! Constraint 4: e4
200! Rhs = 3.5 and type Equality
201!
202 rhs(4) = 3.5d0
203 type(4) = 0
204!
205! Constraint 5: e5
206! Rhs = 0.0 and type Equality
207!
208 type(5) = 0
209!
210! Information about the Jacobian. CONOPT expects a columnwise
211! representation in Rowno, Value, Nlflag and Colsta.
212!
213! Colsta = Start of column indices (No Defaults):
214! Rowno = Row indices
215! Value = Value of derivative (by default only linear
216! derivatives are used)
217! Nlflag = 0 for linear and 1 for nonlinear derivative
218! (not needed for completely linear models)
219!
220! Indices
221! x(1) x(2) x(3)
222! 1: 1
223! 2: 5
224! 3: 2 6
225! 4: 3 7
226! 5: 4 8 9
227!
228 colsta(1) = 1
229 colsta(2) = 5
230 colsta(3) = 9
231 colsta(4) = 10
232 rowno(1) = 1
233 rowno(2) = 3
234 rowno(3) = 4
235 rowno(4) = 5
236 rowno(5) = 2
237 rowno(6) = 3
238 rowno(7) = 4
239 rowno(8) = 5
240 rowno(9) = 5
241!
242! Nonlinearity Structure: L = 0 are linear and NL = 1 are nonlinear
243! x(1) x(2) x(3)
244! 1: NL
245! 2: NL
246! 3: NL L
247! 4: NL L
248! 5: NL NL L
249!
250 nlflag(1) = 1
251 nlflag(2) = 1
252 nlflag(3) = 1
253 nlflag(4) = 1
254 nlflag(5) = 1
255 nlflag(6) = 0
256 nlflag(7) = 0
257 nlflag(8) = 1
258 nlflag(9) = 0
259!
260! Value (Linear only)
261! x(1) x(2) x(3)
262! 1: NL
263! 2: NL
264! 3: NL 1.0
265! 4: NL 1.0
266! 5: NL NL 1.0
267!
268 value(6) = 1.d0
269 value(7) = 1.d0
270 value(9) = 1.d0
271
272 tria_readmatrix = 0 ! Return value means OK
273
274end Function tria_readmatrix
275!
276!==========================================================================
277! Compute nonlinear terms and non-constant Jacobian elements
278!
279
280!> Compute nonlinear terms and non-constant Jacobian elements
281!!
282!! @include{doc} fdeval_params.dox
283Integer Function tria_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
284 n, nz, thread, usrmem )
285#ifdef dec_directives_win32
286!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
287#endif
288 implicit none
289 integer, intent (in) :: n ! number of variables
290 integer, intent (in) :: rowno ! number of the row to be evaluated
291 integer, intent (in) :: nz ! number of nonzeros in this row
292 real*8, intent (in), dimension(n) :: x ! vector of current solution values
293 real*8, intent (in out) :: g ! constraint value
294 real*8, intent (in out), dimension(n) :: jac ! vector of derivatives for current constraint
295 integer, intent (in), dimension(nz) :: jcnm ! list of variables that appear nonlinearly
296 ! in this row. Ffor information only.
297 integer, intent (in) :: mode ! evaluation mode: 1 = function value
298 ! 2 = derivatives, 3 = both
299 integer, intent (in) :: ignerr ! if 1 then errors can be ignored as long
300 ! as errcnt is incremented
301 integer, intent (in out) :: errcnt ! error counter to be incremented in case
302 ! of function evaluation errors.
303 integer, intent (in) :: thread
304 real*8 usrmem(*) ! optional user memory
305!
306! Row 1: e1 .. sqr(x1) =E= 1;
307!
308 if ( rowno == 1 ) then
309!
310! Mode = 1 or 3. G = sqr(x1)
311!
312 if ( mode == 1 .or. mode == 3 ) then
313 g = x(1)*x(1)
314 endif
315!
316! Mode = 2 or 3: Derivative values:
317!
318 if ( mode .eq. 2 .or. mode .eq. 3 ) then
319 jac(1) = 2.d0*x(1)
320 endif
321 tria_fdeval = 0
322 else if ( rowno == 2 ) then
323!
324! e2 .. sqr(x2) =E= 1;
325!
326 if ( mode == 1 .or. mode == 3 ) then
327 g = x(2)*x(2)
328 endif
329 if ( mode .eq. 2 .or. mode .eq. 3 ) then
330 jac(2) = 2.d0*x(2)
331 endif
332 tria_fdeval = 0
333 else if ( rowno == 3 .or. rowno == 4 ) then
334!
335! e3 .. sqr(x1) + x2 =E= 3;
336! e4 .. sqr(x1) + x2 =E= 3.5;
337! These row have the same nonlinear term and they are implemented
338! together
339!
340 if ( mode == 1 .or. mode == 3 ) then
341 g = x(1)*x(1)
342 endif
343 if ( mode .eq. 2 .or. mode .eq. 3 ) then
344 jac(1) = 2.d0*x(1)
345 endif
346 tria_fdeval = 0
347 else if ( rowno == 5 ) then
348!
349! e5 .. x3 =E= sqr(x1 + x2);
350!
351 if ( mode == 1 .or. mode == 3 ) then
352 g = -(x(1)+x(2))*(x(1)+x(2))
353 endif
354 if ( mode .eq. 2 .or. mode .eq. 3 ) then
355 jac(1) = -2.d0*(x(1)+x(2))
356 jac(2) = jac(1)
357 endif
358 tria_fdeval = 0
359 else
360 tria_fdeval = 1
361 endif
362
363end Function tria_fdeval
364
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
Definition comdecl.f90:132
integer function std_status(modsta, solsta, iter, objval, usrmem)
Definition comdecl.f90:88
subroutine checkdual(case, minmax)
Definition comdecl.f90:394
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
Definition comdecl.f90:205
integer function std_triord(mode, type, status, irow, icol, inf, value, resid, usrmem)
Definition comdecl.f90:289
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
Definition comdecl.f90:248
integer(c_int) function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
Definition conopt.f90:1265
integer(c_int) function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
Definition conopt.f90:1238
integer(c_int) function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
Definition conopt.f90:1212
integer(c_int) function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
Definition conopt.f90:1111
integer(c_int) function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
Definition conopt.f90:1291
integer(c_int) function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
Definition conopt.f90:1135
integer(c_int) function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
Definition conopt.f90:928
integer(c_int) function coidef_triord(cntvect, coi_triord)
define callback routine for providing the triangular order information.
Definition conopt.f90:1371
integer(c_int) function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
Definition conopt.f90:293
integer(c_int) function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
Definition conopt.f90:97
integer(c_int) function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
Definition conopt.f90:121
integer(c_int) function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
Definition conopt.f90:167
integer(c_int) function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
Definition conopt.f90:213
integer(c_int) function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
Definition conopt.f90:144
integer(c_int) function coidef_objvar(cntvect, objvar)
defines the Objective Variable.
Definition conopt.f90:257
integer(c_int) function coi_create(cntvect)
initializes CONOPT and creates the control vector.
Definition conopt.f90:1726
integer(c_int) function coi_free(cntvect)
frees the control vector.
Definition conopt.f90:1749
integer(c_int) function coi_solve(cntvect)
method for starting the solving process of CONOPT.
Definition conopt.f90:1625
integer solcalls
Definition comdecl.f90:15
integer sstat
Definition comdecl.f90:18
integer, parameter infeasible
Definition comdecl.f90:31
integer stacalls
Definition comdecl.f90:14
subroutine flog(msg, code)
Definition comdecl.f90:62
logical do_allocate
Definition comdecl.f90:27
integer mstat
Definition comdecl.f90:17
subroutine startup
Definition comdecl.f90:41
integer function tria_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
Definition tria01.f90:253
integer function tria_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
Definition tria01.f90:136
program triabad02
Main program. A simple setup and call of CONOPT.
Definition triabad02.f90:36