CONOPT
Loading...
Searching...
No Matches
triabad02.f90
Go to the documentation of this file.
1!> @file triabad02.f90
2!! @ingroup FORT1THREAD_EXAMPLES
3!!
4!!
5!! Similar to triabad01, but this time e2 will converge to a point with
6!! a bad pivot. This is not useful.
7!!
8!! @verbatim
9!! variable x1, x2, x3;
10!! equation e1, e2, e3, e4, e5;
11!!
12!! e1 .. sqr(x1) =E= 1;
13!! e2 .. sqr(x2) =E= 0;
14!! e3 .. sqr(x1) + x2 =E= 3;
15!! e4 .. sqr(x1) + x2 =E= 3.5;
16!! e5 .. x3 =E= sqr(x1 + x2);
17!!
18!! x1.l = 0.99;
19!! x2.l = 0.5;
20!!
21!! model m / all /;
22!! solve m using nlp maximizing x3;
23!! @endverbatim
24!!
25!!
26!! For more information about the individual callbacks, please have a look at the source code.
27
28!> Main program. A simple setup and call of CONOPT
29!!
30Program triabad02
31
32 Use proginfo
33 Use coidef
34 implicit None
35!
36! Declare the user callback routines as Integer, External:
37!
38 Integer, External :: tria_readmatrix ! Mandatory Matrix definition routine defined below
39 Integer, External :: tria_fdeval ! Function and Derivative evaluation routine
40 ! needed a nonlinear model.
41 Integer, External :: std_status ! Standard callback for displaying solution status
42 Integer, External :: std_solution ! Standard callback for displaying solution values
43 Integer, External :: std_message ! Standard callback for managing messages
44 Integer, External :: std_errmsg ! Standard callback for managing error messages
45 Integer, External :: std_triord ! Standard callback for triangular order
46#if defined(itl)
47!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
48!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
49!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Status
50!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Solution
51!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Message
52!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_ErrMsg
53!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_TriOrd
54#endif
55!
56! Control vector
57!
58 INTEGER :: numcallback
59 INTEGER, Dimension(:), Pointer :: cntvect
60 INTEGER :: coi_error
61
62 call startup
63!
64! Create and initialize a Control Vector
65!
66 numcallback = coidef_size()
67 Allocate( cntvect(numcallback) )
68 coi_error = coidef_inifort( cntvect )
69!
70! Tell CONOPT about the size of the model by populating the Control Vector:
71!
72 coi_error = max( coi_error, coidef_numvar( cntvect, 3 ) ) ! # variables
73 coi_error = max( coi_error, coidef_numcon( cntvect, 5 ) ) ! # constraints
74 coi_error = max( coi_error, coidef_numnz( cntvect, 9 ) ) ! # nonzeros in the Jacobian
75 coi_error = max( coi_error, coidef_numnlnz( cntvect, 6 ) ) ! # of which are nonlinear
76 coi_error = max( coi_error, coidef_optdir( cntvect, -1 ) ) ! Minimize
77 coi_error = max( coi_error, coidef_objvar( cntvect, 3 ) ) ! Objective is variable 3
78 coi_error = max( coi_error, coidef_optfile( cntvect, 'triabad02.opt' ) )
79!
80! Tell CONOPT about the callback routines:
81!
82 coi_error = max( coi_error, coidef_readmatrix( cntvect, tria_readmatrix ) )
83 coi_error = max( coi_error, coidef_fdeval( cntvect, tria_fdeval ) )
84 coi_error = max( coi_error, coidef_status( cntvect, std_status ) )
85 coi_error = max( coi_error, coidef_solution( cntvect, std_solution ) )
86 coi_error = max( coi_error, coidef_message( cntvect, std_message ) )
87 coi_error = max( coi_error, coidef_errmsg( cntvect, std_errmsg ) )
88 coi_error = max( coi_error, coidef_triord( cntvect, std_triord ) )
89
90#if defined(LICENSE_INT_1) && defined(LICENSE_INT_2) && defined(LICENSE_INT_3) && defined(LICENSE_TEXT)
91 coi_error = max( coi_error, coidef_license( cntvect, license_int_1, license_int_2, license_int_3, license_text) )
92#endif
93
94 If ( coi_error .ne. 0 ) THEN
95 write(*,*)
96 write(*,*) '**** Fatal Error while loading CONOPT Callback routines.'
97 write(*,*)
98 call flog( "Skipping Solve due to setup errors", 1 )
99 ENDIF
100!
101! Save the solution so we can check the duals:
102!
103 do_allocate = .true.
104!
105! Start CONOPT:
106!
107 coi_error = coi_solve( cntvect )
108
109 write(*,*)
110 write(*,*) 'End of Triabad02 example. Return code=',coi_error
111
112 If ( coi_error /= 0 ) then
113 call flog( "Errors encountered during solution", 1 )
114 elseif ( stacalls == 0 .or. solcalls == 0 ) then
115 call flog( "Status or Solution routine was not called", 1 )
116 elseif ( sstat /= 1 .or. mstat /= 5 ) then
117 call flog( "Solver and Model Status was not as expected (1,5)", 1 )
118! No objective test for infeasible model
119 Else
120 Call checkdual( 'Triabad02', infeasible )
121 endif
122
123 if ( coi_free(cntvect) /= 0 ) call flog( "Error while freeing control vector",1)
124
125 call flog( "Successful Solve", 0 )
126
127End Program triabad02
128!
129! ============================================================================
130! Define information about the model:
131!
132
133!> Define information about the model
134!!
135!! @include{doc} readMatrix_params.dox
136Integer Function tria_readmatrix( lower, curr, upper, vsta, type, rhs, esta, &
137 colsta, rowno, value, nlflag, n, m, nz, &
138 usrmem )
139#if defined(itl)
140!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
141#endif
142 implicit none
143 integer, intent (in) :: n ! number of variables
144 integer, intent (in) :: m ! number of constraints
145 integer, intent (in) :: nz ! number of nonzeros
146 real*8, intent (in out), dimension(n) :: lower ! vector of lower bounds
147 real*8, intent (in out), dimension(n) :: curr ! vector of initial values
148 real*8, intent (in out), dimension(n) :: upper ! vector of upper bounds
149 integer, intent (in out), dimension(n) :: vsta ! vector of initial variable status
150 ! (not defined here)
151 integer, intent (out), dimension(m) :: type ! vector of equation types
152 integer, intent (in out), dimension(m) :: esta ! vector of initial equation status
153 ! (not defined here)
154 real*8, intent (in out), dimension(m) :: rhs ! vector of right hand sides
155 integer, intent (in out), dimension(n+1) :: colsta ! vector with start of column indices
156 integer, intent (out), dimension(nz) :: rowno ! vector of row numbers
157 integer, intent (in out), dimension(nz) :: nlflag ! vector of nonlinearity flags
158 real*8, intent (in out), dimension(nz) :: value ! vector of matrix values
159 real*8 usrmem(*) ! optional user memory
160!
161! Information about Variables:
162! Default: Lower = -Inf, Curr = 0, and Upper = +inf.
163! Default: the status information in Vsta is not used.
164!
165! The model uses initial values for x1 and x2
166!
167 curr(1) = 0.99d0
168 curr(2) = 0.70d0
169!
170! Information about Constraints:
171! Default: Rhs = 0
172! Default: the status information in Esta and the function
173! value in FV are not used.
174! Default: Type: There is no default.
175! 0 = Equality,
176! 1 = Greater than or equal,
177! 2 = Less than or equal,
178! 3 = Non binding.
179!
180! Constraint 1: e1
181! Rhs = 1.0 and type Equality
182!
183 rhs(1) = 1.0d0
184 type(1) = 0
185!
186! Constraint 2: e2
187! Rhs = 1.0 and type Equality
188!
189 rhs(2) = 0.0d0
190 type(2) = 0
191!
192! Constraint 3: e3
193! Rhs = 3.0 and type Equality
194!
195 rhs(3) = 3.0d0
196 type(3) = 0
197!
198! Constraint 4: e4
199! Rhs = 3.5 and type Equality
200!
201 rhs(4) = 3.5d0
202 type(4) = 0
203!
204! Constraint 5: e5
205! Rhs = 0.0 and type Equality
206!
207 type(5) = 0
208!
209! Information about the Jacobian. We use the standard method with
210! Rowno, Value, Nlflag and Colsta and we do not use Colno.
211!
212! Colsta = Start of column indices (No Defaults):
213! Rowno = Row indices
214! Value = Value of derivative (by default only linear
215! derivatives are used)
216! Nlflag = 0 for linear and 1 for nonlinear derivative
217! (not needed for completely linear models)
218!
219! Indices
220! x(1) x(2) x(3)
221! 1: 1
222! 2: 5
223! 3: 2 6
224! 4: 3 7
225! 5: 4 8 9
226!
227 colsta(1) = 1
228 colsta(2) = 5
229 colsta(3) = 9
230 colsta(4) = 10
231 rowno(1) = 1
232 rowno(2) = 3
233 rowno(3) = 4
234 rowno(4) = 5
235 rowno(5) = 2
236 rowno(6) = 3
237 rowno(7) = 4
238 rowno(8) = 5
239 rowno(9) = 5
240!
241! Nonlinearity Structure: L = 0 are linear and NL = 1 are nonlinear
242! x(1) x(2) x(3)
243! 1: NL
244! 2: NL
245! 3: NL L
246! 4: NL L
247! 5: NL NL L
248!
249 nlflag(1) = 1
250 nlflag(2) = 1
251 nlflag(3) = 1
252 nlflag(4) = 1
253 nlflag(5) = 1
254 nlflag(6) = 0
255 nlflag(7) = 0
256 nlflag(8) = 1
257 nlflag(9) = 0
258!
259! Value (Linear only)
260! x(1) x(2) x(3)
261! 1: NL
262! 2: NL
263! 3: NL 1.0
264! 4: NL 1.0
265! 5: NL NL 1.0
266!
267 value(6) = 1.d0
268 value(7) = 1.d0
269 value(9) = 1.d0
270
271 tria_readmatrix = 0 ! Return value means OK
272
273end Function tria_readmatrix
274!
275!==========================================================================
276! Compute nonlinear terms and non-constant Jacobian elements
277!
278
279!> Compute nonlinear terms and non-constant Jacobian elements
280!!
281!! @include{doc} fdeval_params.dox
282Integer Function tria_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
283 n, nz, thread, usrmem )
284#if defined(itl)
285!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
286#endif
287 implicit none
288 integer, intent (in) :: n ! number of variables
289 integer, intent (in) :: rowno ! number of the row to be evaluated
290 integer, intent (in) :: nz ! number of nonzeros in this row
291 real*8, intent (in), dimension(n) :: x ! vector of current solution values
292 real*8, intent (in out) :: g ! constraint value
293 real*8, intent (in out), dimension(n) :: jac ! vector of derivatives for current constraint
294 integer, intent (in), dimension(nz) :: jcnm ! list of variables that appear nonlinearly
295 ! in this row. Ffor information only.
296 integer, intent (in) :: mode ! evaluation mode: 1 = function value
297 ! 2 = derivatives, 3 = both
298 integer, intent (in) :: ignerr ! if 1 then errors can be ignored as long
299 ! as errcnt is incremented
300 integer, intent (in out) :: errcnt ! error counter to be incremented in case
301 ! of function evaluation errors.
302 integer, intent (in) :: thread
303 real*8 usrmem(*) ! optional user memory
304!
305! Row 1: e1 .. sqr(x1) =E= 1;
306!
307 if ( rowno == 1 ) then
308!
309! Mode = 1 or 3. G = sqr(x1)
310!
311 if ( mode == 1 .or. mode == 3 ) then
312 g = x(1)*x(1)
313 endif
314!
315! Mode = 2 or 3: Derivative values:
316!
317 if ( mode .eq. 2 .or. mode .eq. 3 ) then
318 jac(1) = 2.d0*x(1)
319 endif
320 tria_fdeval = 0
321 else if ( rowno == 2 ) then
322!
323! e2 .. sqr(x2) =E= 1;
324!
325 if ( mode == 1 .or. mode == 3 ) then
326 g = x(2)*x(2)
327 endif
328 if ( mode .eq. 2 .or. mode .eq. 3 ) then
329 jac(2) = 2.d0*x(2)
330 endif
331 tria_fdeval = 0
332 else if ( rowno == 3 .or. rowno == 4 ) then
333!
334! e3 .. sqr(x1) + x2 =E= 3;
335! e4 .. sqr(x1) + x2 =E= 3.5;
336! These row have the same nonlinear term and they are implemented
337! together
338!
339 if ( mode == 1 .or. mode == 3 ) then
340 g = x(1)*x(1)
341 endif
342 if ( mode .eq. 2 .or. mode .eq. 3 ) then
343 jac(1) = 2.d0*x(1)
344 endif
345 tria_fdeval = 0
346 else if ( rowno == 5 ) then
347!
348! e5 .. x3 =E= sqr(x1 + x2);
349!
350 if ( mode == 1 .or. mode == 3 ) then
351 g = -(x(1)+x(2))*(x(1)+x(2))
352 endif
353 if ( mode .eq. 2 .or. mode .eq. 3 ) then
354 jac(1) = -2.d0*(x(1)+x(2))
355 jac(2) = jac(1)
356 endif
357 tria_fdeval = 0
358 else
359 tria_fdeval = 1
360 endif
361
362end Function tria_fdeval
363
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
Definition comdecl.f90:128
integer function std_status(modsta, solsta, iter, objval, usrmem)
Definition comdecl.f90:82
subroutine checkdual(case, minmax)
Definition comdecl.f90:365
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
Definition comdecl.f90:203
integer function std_triord(mode, type, status, irow, icol, inf, value, resid, usrmem)
Definition comdecl.f90:291
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
Definition comdecl.f90:248
integer function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
integer function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
integer function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
integer function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
integer function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
integer function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
integer function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
integer function coidef_triord(cntvect, coi_triord)
define callback routine for providing the triangular order information.
integer function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
Definition coistart.f90:680
integer function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
Definition coistart.f90:358
integer function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
Definition coistart.f90:437
integer function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
Definition coistart.f90:552
integer function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
Definition coistart.f90:476
integer function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
Definition coistart.f90:398
integer function coidef_objvar(cntvect, objvar)
defines the Objective Variable.
Definition coistart.f90:586
integer function coidef_size()
returns the size the Control Vector must have, measured in standard Integer units.
Definition coistart.f90:176
integer function coidef_inifort(cntvect)
initialisation method for Fortran applications.
Definition coistart.f90:314
integer function coi_solve(cntvect)
method for starting the solving process of CONOPT.
Definition coistart.f90:14
integer solcalls
Definition comdecl.f90:9
integer sstat
Definition comdecl.f90:12
integer, parameter infeasible
Definition comdecl.f90:25
integer stacalls
Definition comdecl.f90:8
subroutine flog(msg, code)
Definition comdecl.f90:56
logical do_allocate
Definition comdecl.f90:21
integer mstat
Definition comdecl.f90:11
subroutine startup
Definition comdecl.f90:35
integer function tria_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
Definition tria01.f90:265
integer function tria_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
Definition tria01.f90:145
program triabad02
Main program. A simple setup and call of CONOPT.
Definition triabad02.f90:30