CONOPT
Loading...
Searching...
No Matches
triabad02.f90
Go to the documentation of this file.
1!> @file triabad02.f90
2!! @ingroup FORT1THREAD_EXAMPLES
3!!
4!!
5!! Similar to triabad01, but this time e2 will converge to a point with
6!! a bad pivot. This is not useful.
7!!
8!! @verbatim
9!! variable x1, x2, x3;
10!! equation e1, e2, e3, e4, e5;
11!!
12!! e1 .. sqr(x1) =E= 1;
13!! e2 .. sqr(x2) =E= 0;
14!! e3 .. sqr(x1) + x2 =E= 3;
15!! e4 .. sqr(x1) + x2 =E= 3.5;
16!! e5 .. x3 =E= sqr(x1 + x2);
17!!
18!! x1.l = 0.99;
19!! x2.l = 0.5;
20!!
21!! model m / all /;
22!! solve m using nlp maximizing x3;
23!! @endverbatim
24!!
25!!
26!! For more information about the individual callbacks, please have a look at the source code.
27
28#if defined(_WIN32) && !defined(_WIN64)
29#define dec_directives_win32
30#endif
31
32!> Main program. A simple setup and call of CONOPT
33!!
34Program triabad02
35
37 Use conopt
38 implicit None
39!
40! Declare the user callback routines as Integer, External:
41!
42 Integer, External :: tria_readmatrix ! Mandatory Matrix definition routine defined below
43 Integer, External :: tria_fdeval ! Function and Derivative evaluation routine
44 ! needed a nonlinear model.
45 Integer, External :: std_status ! Standard callback for displaying solution status
46 Integer, External :: std_solution ! Standard callback for displaying solution values
47 Integer, External :: std_message ! Standard callback for managing messages
48 Integer, External :: std_errmsg ! Standard callback for managing error messages
49 Integer, External :: std_triord ! Standard callback for triangular order
50#ifdef dec_directives_win32
51!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
52!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
53!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Status
54!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Solution
55!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Message
56!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_ErrMsg
57!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_TriOrd
58#endif
59!
60! Control vector
61!
62 INTEGER, Dimension(:), Pointer :: cntvect
63 INTEGER :: coi_error
64
65 call startup
66!
67! Create and initialize a Control Vector
68!
69 coi_error = coi_create( cntvect )
70!
71! Tell CONOPT about the size of the model by populating the Control Vector:
72!
73 coi_error = max( coi_error, coidef_numvar( cntvect, 3 ) ) ! # variables
74 coi_error = max( coi_error, coidef_numcon( cntvect, 5 ) ) ! # constraints
75 coi_error = max( coi_error, coidef_numnz( cntvect, 9 ) ) ! # nonzeros in the Jacobian
76 coi_error = max( coi_error, coidef_numnlnz( cntvect, 6 ) ) ! # of which are nonlinear
77 coi_error = max( coi_error, coidef_optdir( cntvect, -1 ) ) ! Minimize
78 coi_error = max( coi_error, coidef_objvar( cntvect, 3 ) ) ! Objective is variable 3
79 coi_error = max( coi_error, coidef_optfile( cntvect, 'triabad02.opt' ) )
80!
81! Tell CONOPT about the callback routines:
82!
83 coi_error = max( coi_error, coidef_readmatrix( cntvect, tria_readmatrix ) )
84 coi_error = max( coi_error, coidef_fdeval( cntvect, tria_fdeval ) )
85 coi_error = max( coi_error, coidef_status( cntvect, std_status ) )
86 coi_error = max( coi_error, coidef_solution( cntvect, std_solution ) )
87 coi_error = max( coi_error, coidef_message( cntvect, std_message ) )
88 coi_error = max( coi_error, coidef_errmsg( cntvect, std_errmsg ) )
89 coi_error = max( coi_error, coidef_triord( cntvect, std_triord ) )
90
91#if defined(CONOPT_LICENSE_INT_1) && defined(CONOPT_LICENSE_INT_2) && defined(CONOPT_LICENSE_INT_3) && defined(CONOPT_LICENSE_TEXT)
92 coi_error = max( coi_error, coidef_license( cntvect, conopt_license_int_1, conopt_license_int_2, conopt_license_int_3, conopt_license_text) )
93#endif
94
95 If ( coi_error .ne. 0 ) THEN
96 write(*,*)
97 write(*,*) '**** Fatal Error while loading CONOPT Callback routines.'
98 write(*,*)
99 call flog( "Skipping Solve due to setup errors", 1 )
100 ENDIF
101!
102! Save the solution so we can check the duals:
103!
104 do_allocate = .true.
105!
106! Start CONOPT:
107!
108 coi_error = coi_solve( cntvect )
109
110 write(*,*)
111 write(*,*) 'End of Triabad02 example. Return code=',coi_error
112
113 If ( coi_error /= 0 ) then
114 call flog( "Errors encountered during solution", 1 )
115 elseif ( stacalls == 0 .or. solcalls == 0 ) then
116 call flog( "Status or Solution routine was not called", 1 )
117 elseif ( sstat /= 1 .or. mstat /= 5 ) then
118 call flog( "Solver and Model Status was not as expected (1,5)", 1 )
119! No objective test for infeasible model
120 Else
121 Call checkdual( 'Triabad02', infeasible )
122 endif
123
124 if ( coi_free(cntvect) /= 0 ) call flog( "Error while freeing control vector",1)
125
126 call flog( "Successful Solve", 0 )
127!
128! Free solution memory
129!
130 call finalize
132End Program triabad02
133!
134! ============================================================================
135! Define information about the model:
136!
137
138!> Define information about the model
139!!
140!! @include{doc} readMatrix_params.dox
141Integer Function tria_readmatrix( lower, curr, upper, vsta, type, rhs, esta, &
142 colsta, rowno, value, nlflag, n, m, nz, &
143 usrmem )
144#ifdef dec_directives_win32
145!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
146#endif
147 implicit none
148 integer, intent (in) :: n ! number of variables
149 integer, intent (in) :: m ! number of constraints
150 integer, intent (in) :: nz ! number of nonzeros
151 real*8, intent (in out), dimension(n) :: lower ! vector of lower bounds
152 real*8, intent (in out), dimension(n) :: curr ! vector of initial values
153 real*8, intent (in out), dimension(n) :: upper ! vector of upper bounds
154 integer, intent (in out), dimension(n) :: vsta ! vector of initial variable status
155 ! (not defined here)
156 integer, intent (out), dimension(m) :: type ! vector of equation types
157 integer, intent (in out), dimension(m) :: esta ! vector of initial equation status
158 ! (not defined here)
159 real*8, intent (in out), dimension(m) :: rhs ! vector of right hand sides
160 integer, intent (in out), dimension(n+1) :: colsta ! vector with start of column indices
161 integer, intent (out), dimension(nz) :: rowno ! vector of row numbers
162 integer, intent (in out), dimension(nz) :: nlflag ! vector of nonlinearity flags
163 real*8, intent (in out), dimension(nz) :: value ! vector of matrix values
164 real*8 usrmem(*) ! optional user memory
165!
166! Information about Variables:
167! Default: Lower = -Inf, Curr = 0, and Upper = +inf.
168! Default: the status information in Vsta is not used.
169!
170! The model uses initial values for x1 and x2
171!
172 curr(1) = 0.99d0
173 curr(2) = 0.70d0
174!
175! Information about Constraints:
176! Default: Rhs = 0
177! Default: the status information in Esta and the function
178! value in FV are not used.
179! Default: Type: There is no default.
180! 0 = Equality,
181! 1 = Greater than or equal,
182! 2 = Less than or equal,
183! 3 = Non binding.
184!
185! Constraint 1: e1
186! Rhs = 1.0 and type Equality
187!
188 rhs(1) = 1.0d0
189 type(1) = 0
190!
191! Constraint 2: e2
192! Rhs = 1.0 and type Equality
193!
194 rhs(2) = 0.0d0
195 type(2) = 0
196!
197! Constraint 3: e3
198! Rhs = 3.0 and type Equality
199!
200 rhs(3) = 3.0d0
201 type(3) = 0
202!
203! Constraint 4: e4
204! Rhs = 3.5 and type Equality
205!
206 rhs(4) = 3.5d0
207 type(4) = 0
208!
209! Constraint 5: e5
210! Rhs = 0.0 and type Equality
211!
212 type(5) = 0
213!
214! Information about the Jacobian. CONOPT expects a columnwise
215! representation in Rowno, Value, Nlflag and Colsta.
216!
217! Colsta = Start of column indices (No Defaults):
218! Rowno = Row indices
219! Value = Value of derivative (by default only linear
220! derivatives are used)
221! Nlflag = 0 for linear and 1 for nonlinear derivative
222! (not needed for completely linear models)
223!
224! Indices
225! x(1) x(2) x(3)
226! 1: 1
227! 2: 5
228! 3: 2 6
229! 4: 3 7
230! 5: 4 8 9
231!
232 colsta(1) = 1
233 colsta(2) = 5
234 colsta(3) = 9
235 colsta(4) = 10
236 rowno(1) = 1
237 rowno(2) = 3
238 rowno(3) = 4
239 rowno(4) = 5
240 rowno(5) = 2
241 rowno(6) = 3
242 rowno(7) = 4
243 rowno(8) = 5
244 rowno(9) = 5
245!
246! Nonlinearity Structure: L = 0 are linear and NL = 1 are nonlinear
247! x(1) x(2) x(3)
248! 1: NL
249! 2: NL
250! 3: NL L
251! 4: NL L
252! 5: NL NL L
253!
254 nlflag(1) = 1
255 nlflag(2) = 1
256 nlflag(3) = 1
257 nlflag(4) = 1
258 nlflag(5) = 1
259 nlflag(6) = 0
260 nlflag(7) = 0
261 nlflag(8) = 1
262 nlflag(9) = 0
263!
264! Value (Linear only)
265! x(1) x(2) x(3)
266! 1: NL
267! 2: NL
268! 3: NL 1.0
269! 4: NL 1.0
270! 5: NL NL 1.0
271!
272 value(6) = 1.d0
273 value(7) = 1.d0
274 value(9) = 1.d0
275
276 tria_readmatrix = 0 ! Return value means OK
277
278end Function tria_readmatrix
279!
280!==========================================================================
281! Compute nonlinear terms and non-constant Jacobian elements
282!
283
284!> Compute nonlinear terms and non-constant Jacobian elements
285!!
286!! @include{doc} fdeval_params.dox
287Integer Function tria_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
288 n, nz, thread, usrmem )
289#ifdef dec_directives_win32
290!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
291#endif
292 implicit none
293 integer, intent (in) :: n ! number of variables
294 integer, intent (in) :: rowno ! number of the row to be evaluated
295 integer, intent (in) :: nz ! number of nonzeros in this row
296 real*8, intent (in), dimension(n) :: x ! vector of current solution values
297 real*8, intent (in out) :: g ! constraint value
298 real*8, intent (in out), dimension(n) :: jac ! vector of derivatives for current constraint
299 integer, intent (in), dimension(nz) :: jcnm ! list of variables that appear nonlinearly
300 ! in this row. Ffor information only.
301 integer, intent (in) :: mode ! evaluation mode: 1 = function value
302 ! 2 = derivatives, 3 = both
303 integer, intent (in) :: ignerr ! if 1 then errors can be ignored as long
304 ! as errcnt is incremented
305 integer, intent (in out) :: errcnt ! error counter to be incremented in case
306 ! of function evaluation errors.
307 integer, intent (in) :: thread
308 real*8 usrmem(*) ! optional user memory
309!
310! Row 1: e1 .. sqr(x1) =E= 1;
311!
312 if ( rowno == 1 ) then
313!
314! Mode = 1 or 3. G = sqr(x1)
315!
316 if ( mode == 1 .or. mode == 3 ) then
317 g = x(1)*x(1)
318 endif
319!
320! Mode = 2 or 3: Derivative values:
321!
322 if ( mode .eq. 2 .or. mode .eq. 3 ) then
323 jac(1) = 2.d0*x(1)
324 endif
325 tria_fdeval = 0
326 else if ( rowno == 2 ) then
327!
328! e2 .. sqr(x2) =E= 1;
329!
330 if ( mode == 1 .or. mode == 3 ) then
331 g = x(2)*x(2)
332 endif
333 if ( mode .eq. 2 .or. mode .eq. 3 ) then
334 jac(2) = 2.d0*x(2)
335 endif
336 tria_fdeval = 0
337 else if ( rowno == 3 .or. rowno == 4 ) then
338!
339! e3 .. sqr(x1) + x2 =E= 3;
340! e4 .. sqr(x1) + x2 =E= 3.5;
341! These row have the same nonlinear term and they are implemented
342! together
343!
344 if ( mode == 1 .or. mode == 3 ) then
345 g = x(1)*x(1)
346 endif
347 if ( mode .eq. 2 .or. mode .eq. 3 ) then
348 jac(1) = 2.d0*x(1)
349 endif
350 tria_fdeval = 0
351 else if ( rowno == 5 ) then
352!
353! e5 .. x3 =E= sqr(x1 + x2);
354!
355 if ( mode == 1 .or. mode == 3 ) then
356 g = -(x(1)+x(2))*(x(1)+x(2))
357 endif
358 if ( mode .eq. 2 .or. mode .eq. 3 ) then
359 jac(1) = -2.d0*(x(1)+x(2))
360 jac(2) = jac(1)
361 endif
362 tria_fdeval = 0
363 else
364 tria_fdeval = 1
365 endif
366
367end Function tria_fdeval
368
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
Definition comdecl.f90:170
integer function std_status(modsta, solsta, iter, objval, usrmem)
Definition comdecl.f90:126
subroutine checkdual(case, minmax)
Definition comdecl.f90:432
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
Definition comdecl.f90:243
integer function std_triord(mode, type, status, irow, icol, inf, value, resid, usrmem)
Definition comdecl.f90:327
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
Definition comdecl.f90:286
integer(c_int) function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
Definition conopt.f90:1265
integer(c_int) function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
Definition conopt.f90:1238
integer(c_int) function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
Definition conopt.f90:1212
integer(c_int) function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
Definition conopt.f90:1111
integer(c_int) function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
Definition conopt.f90:1291
integer(c_int) function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
Definition conopt.f90:1135
integer(c_int) function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
Definition conopt.f90:928
integer(c_int) function coidef_triord(cntvect, coi_triord)
define callback routine for providing the triangular order information.
Definition conopt.f90:1371
integer(c_int) function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
Definition conopt.f90:293
integer(c_int) function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
Definition conopt.f90:97
integer(c_int) function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
Definition conopt.f90:121
integer(c_int) function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
Definition conopt.f90:167
integer(c_int) function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
Definition conopt.f90:213
integer(c_int) function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
Definition conopt.f90:144
integer(c_int) function coidef_objvar(cntvect, objvar)
defines the Objective Variable.
Definition conopt.f90:257
integer(c_int) function coi_create(cntvect)
initializes CONOPT and creates the control vector.
Definition conopt.f90:1726
integer(c_int) function coi_free(cntvect)
frees the control vector.
Definition conopt.f90:1749
integer(c_int) function coi_solve(cntvect)
method for starting the solving process of CONOPT.
Definition conopt.f90:1625
integer solcalls
Definition comdecl.f90:15
integer sstat
Definition comdecl.f90:18
subroutine finalize
Definition comdecl.f90:79
integer, parameter infeasible
Definition comdecl.f90:31
integer stacalls
Definition comdecl.f90:14
subroutine flog(msg, code)
Definition comdecl.f90:62
logical do_allocate
Definition comdecl.f90:27
integer mstat
Definition comdecl.f90:17
subroutine startup
Definition comdecl.f90:41
integer function tria_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
Definition tria01.f90:257
integer function tria_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
Definition tria01.f90:140
program triabad02
Main program. A simple setup and call of CONOPT.
Definition triabad02.f90:36