CONOPT
Loading...
Searching...
No Matches
triabad03.f90
Go to the documentation of this file.
1!> @file triabad03.f90
2!! @ingroup FORT1THREAD_EXAMPLES
3!!
4!!
5!! This is a CONOPT implementation of the GAMS model:
6!!
7!! @verbatim
8!! variable x1, x2, x3;
9!! equation e1, e2, e3, e4, e5;
10!!
11!! e1 .. sqr(x1) =E= 1;
12!! e2 .. sqr(x2) =E= 1;
13!! e3 .. 1.e-10*x2 =E= 1.e-10;
14!! e4 .. -2.e-10*x2 =E= -2.e-10;
15!! e5 .. x3 =E= sqr(x1 + x2);
16!!
17!! x1.l = 0.99;
18!! x2.l = 0.7;
19!!
20!! model m / all /;
21!! solve m using nlp maximizing x3;
22!! @endverbatim
23!!
24!! The equations e3 and e4 are linear and define x2 to a value
25!! consistent with e2, but the pivots are very small and may give
26!! solution problems.
27!!
28!! Overall, the model is feasible and should end in a locally optimal
29!! point with (x1,x2,x3) = (1,1,4)
30!!
31!!
32!! For more information about the individual callbacks, please have a look at the source code.
33
34#if defined(_WIN32) && !defined(_WIN64)
35#define dec_directives_win32
36#endif
37
38!> Main program. A simple setup and call of CONOPT
39!!
40Program triabad03
41
43 Use conopt
44 implicit None
45!
46! Declare the user callback routines as Integer, External:
47!
48 Integer, External :: tria_readmatrix ! Mandatory Matrix definition routine defined below
49 Integer, External :: tria_fdeval ! Function and Derivative evaluation routine
50 ! needed a nonlinear model.
51 Integer, External :: std_status ! Standard callback for displaying solution status
52 Integer, External :: std_solution ! Standard callback for displaying solution values
53 Integer, External :: std_message ! Standard callback for managing messages
54 Integer, External :: std_errmsg ! Standard callback for managing error messages
55 Integer, External :: std_triord ! Standard callback for triangular order
56#ifdef dec_directives_win32
57!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
58!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
59!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Status
60!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Solution
61!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Message
62!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_ErrMsg
63!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_TriOrd
64#endif
65!
66! Control vector
67!
68 INTEGER, Dimension(:), Pointer :: cntvect
69 INTEGER :: coi_error
70
71 Call startup
72!
73! Create and initialize a Control Vector
74!
75 coi_error = coi_create( cntvect )
76!
77! Tell CONOPT about the size of the model by populating the Control Vector:
78!
79 coi_error = max( coi_error, coidef_numvar( cntvect, 3 ) ) ! # variables
80 coi_error = max( coi_error, coidef_numcon( cntvect, 5 ) ) ! # constraints
81 coi_error = max( coi_error, coidef_numnz( cntvect, 7 ) ) ! # nonzeros in the Jacobian
82 coi_error = max( coi_error, coidef_numnlnz( cntvect, 4 ) ) ! # of which are nonlinear
83 coi_error = max( coi_error, coidef_optdir( cntvect, +1 ) ) ! Maximize
84 coi_error = max( coi_error, coidef_objvar( cntvect, 3 ) ) ! Objective is variable 3
85 coi_error = max( coi_error, coidef_optfile( cntvect, 'triabad03.opt' ) )
86!
87! Tell CONOPT about the callback routines:
88!
89 coi_error = max( coi_error, coidef_readmatrix( cntvect, tria_readmatrix ) )
90 coi_error = max( coi_error, coidef_fdeval( cntvect, tria_fdeval ) )
91 coi_error = max( coi_error, coidef_status( cntvect, std_status ) )
92 coi_error = max( coi_error, coidef_solution( cntvect, std_solution ) )
93 coi_error = max( coi_error, coidef_message( cntvect, std_message ) )
94 coi_error = max( coi_error, coidef_errmsg( cntvect, std_errmsg ) )
95 coi_error = max( coi_error, coidef_triord( cntvect, std_triord ) )
96
97#if defined(CONOPT_LICENSE_INT_1) && defined(CONOPT_LICENSE_INT_2) && defined(CONOPT_LICENSE_INT_3) && defined(CONOPT_LICENSE_TEXT)
98 coi_error = max( coi_error, coidef_license( cntvect, conopt_license_int_1, conopt_license_int_2, conopt_license_int_3, conopt_license_text) )
99#endif
100
101 If ( coi_error .ne. 0 ) THEN
102 write(*,*)
103 write(*,*) '**** Fatal Error while loading CONOPT Callback routines.'
104 write(*,*)
105 call flog( "Skipping Solve due to setup errors", 1 )
106 ENDIF
107!
108! Save the solution so we can check the duals:
109!
110 do_allocate = .true.
111!
112! Start CONOPT:
113!
114 coi_error = coi_solve( cntvect )
115
116 write(*,*)
117 write(*,*) 'End of Triabad03 example. Return code=',coi_error
118
119 If ( coi_error /= 0 ) then
120 call flog( "Errors encountered during solution", 1 )
121 elseif ( stacalls == 0 .or. solcalls == 0 ) then
122 call flog( "Status or Solution routine was not called", 1 )
123 elseif ( sstat /= 1 .or. mstat /= 2 ) then
124 call flog( "Solver and Model Status was not as expected (1,2)", 1 )
125 elseif ( abs( obj-4.0d0 ) > 0.000001d0 ) then
126 call flog( "Incorrect objective returned", 1 )
127 Else
128 Call checkdual( 'Triabad03', maximize )
129 endif
130
131 if ( coi_free(cntvect) /= 0 ) call flog( "Error while freeing control vector",1)
132
133 call flog( "Successful Solve", 0 )
135End Program triabad03
136!
137! ============================================================================
138! Define information about the model:
139!
140
141!> Define information about the model
142!!
143!! @include{doc} readMatrix_params.dox
144Integer Function tria_readmatrix( lower, curr, upper, vsta, type, rhs, esta, &
145 colsta, rowno, value, nlflag, n, m, nz, &
146 usrmem )
147#ifdef dec_directives_win32
148!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
149#endif
150 implicit none
151 integer, intent (in) :: n ! number of variables
152 integer, intent (in) :: m ! number of constraints
153 integer, intent (in) :: nz ! number of nonzeros
154 real*8, intent (in out), dimension(n) :: lower ! vector of lower bounds
155 real*8, intent (in out), dimension(n) :: curr ! vector of initial values
156 real*8, intent (in out), dimension(n) :: upper ! vector of upper bounds
157 integer, intent (in out), dimension(n) :: vsta ! vector of initial variable status
158 ! (not defined here)
159 integer, intent (out), dimension(m) :: type ! vector of equation types
160 integer, intent (in out), dimension(m) :: esta ! vector of initial equation status
161 ! (not defined here)
162 real*8, intent (in out), dimension(m) :: rhs ! vector of right hand sides
163 integer, intent (in out), dimension(n+1) :: colsta ! vector with start of column indices
164 integer, intent (out), dimension(nz) :: rowno ! vector of row numbers
165 integer, intent (in out), dimension(nz) :: nlflag ! vector of nonlinearity flags
166 real*8, intent (in out), dimension(nz) :: value ! vector of matrix values
167 real*8 usrmem(*) ! optional user memory
168!
169! Information about Variables:
170! Default: Lower = -Inf, Curr = 0, and Upper = +inf.
171! Default: the status information in Vsta is not used.
172!
173! The model uses initial values for x1 and x2
174!
175 curr(1) = 0.99d0
176 curr(2) = 0.70d0
177!
178! Information about Constraints:
179! Default: Rhs = 0
180! Default: the status information in Esta and the function
181! value in FV are not used.
182! Default: Type: There is no default.
183! 0 = Equality,
184! 1 = Greater than or equal,
185! 2 = Less than or equal,
186! 3 = Non binding.
187!
188! Constraint 1: e1
189! Rhs = 1.0 and type Equality
190!
191! e1 .. sqr(x1) =E= 1;
192! e2 .. sqr(x2) =E= 1;
193! e3 .. 1.e-10*x2 =E= 1.e-10;
194! e4 .. -2.e-10*x2 =E= -2.e-10;
195! e5 .. x3 =E= sqr(x1 + x2);
196 rhs(1) = 1.0d0
197 type(1) = 0
198!
199! Constraint 2: e2
200! Rhs = 1.0 and type Equality
201!
202 rhs(2) = 1.0d0
203 type(2) = 0
204!
205! Constraint 3: e3
206! Rhs = 1.0d-10 and type Equality
207!
208 rhs(3) = 1.0d-10
209 type(3) = 0
210!
211! Constraint 4: e4
212! Rhs = -2.0d-10 and type Equality
213!
214 rhs(4) = -2.0d-10
215 type(4) = 0
216!
217! Constraint 5: e5
218! Rhs = 0.0 and type Equality
219!
220 type(5) = 0
221!
222! Information about the Jacobian. CONOPT expects a columnwise
223! representation in Rowno, Value, Nlflag and Colsta.
224!
225! Colsta = Start of column indices (No Defaults):
226! Rowno = Row indices
227! Value = Value of derivative (by default only linear
228! derivatives are used)
229! Nlflag = 0 for linear and 1 for nonlinear derivative
230! (not needed for completely linear models)
231!
232! Indices
233! x(1) x(2) x(3)
234! 1: 1
235! 2: 3
236! 3: 4
237! 4: 5
238! 5: 2 6 7
239!
240 colsta(1) = 1
241 colsta(2) = 3
242 colsta(3) = 7
243 colsta(4) = 8
244 rowno(1) = 1
245 rowno(2) = 5
246 rowno(3) = 2
247 rowno(4) = 3
248 rowno(5) = 4
249 rowno(6) = 5
250 rowno(7) = 5
251!
252! Nonlinearity Structure: L = 0 are linear and NL = 1 are nonlinear
253! x(1) x(2) x(3)
254! 1: NL
255! 2: NL
256! 3: L
257! 4: L
258! 5: NL NL L
259!
260 nlflag(1) = 1
261 nlflag(2) = 1
262 nlflag(3) = 1
263 nlflag(4) = 0
264 nlflag(5) = 0
265 nlflag(6) = 1
266 nlflag(7) = 0
267!
268! Value (Linear only)
269! x(1) x(2) x(3)
270! 1: NL
271! 2: NL
272! 3: 1.0d-10
273! 4: -2.0d-10
274! 5: NL NL 1.0
275! e1 .. sqr(x1) =E= 1;
276! e2 .. sqr(x2) =E= 1;
277! e3 .. 1.e-10*x2 =E= 1.e-10;
278! e4 .. -2.e-10*x2 =E= -2.e-10;
279! e5 .. x3 =E= sqr(x1 + x2);
280!
281 value(4) = 1.d-10
282 value(5) = -2.d-10
283 value(7) = 1.d0
284
285 tria_readmatrix = 0 ! Return value means OK
286
287end Function tria_readmatrix
288!
289!==========================================================================
290! Compute nonlinear terms and non-constant Jacobian elements
291!
292
293!> Compute nonlinear terms and non-constant Jacobian elements
294!!
295!! @include{doc} fdeval_params.dox
296Integer Function tria_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
297 n, nz, thread, usrmem )
298#ifdef dec_directives_win32
299!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
300#endif
301 implicit none
302 integer, intent (in) :: n ! number of variables
303 integer, intent (in) :: rowno ! number of the row to be evaluated
304 integer, intent (in) :: nz ! number of nonzeros in this row
305 real*8, intent (in), dimension(n) :: x ! vector of current solution values
306 real*8, intent (in out) :: g ! constraint value
307 real*8, intent (in out), dimension(n) :: jac ! vector of derivatives for current constraint
308 integer, intent (in), dimension(nz) :: jcnm ! list of variables that appear nonlinearly
309 ! in this row. Ffor information only.
310 integer, intent (in) :: mode ! evaluation mode: 1 = function value
311 ! 2 = derivatives, 3 = both
312 integer, intent (in) :: ignerr ! if 1 then errors can be ignored as long
313 ! as errcnt is incremented
314 integer, intent (in out) :: errcnt ! error counter to be incremented in case
315 ! of function evaluation errors.
316 integer, intent (in) :: thread
317 real*8 usrmem(*) ! optional user memory
318!
319! Row 1: e1 .. sqr(x1) =E= 1;
320!
321 if ( rowno == 1 ) then
322!
323! Mode = 1 or 3. G = sqr(x1)
324!
325 if ( mode == 1 .or. mode == 3 ) then
326 g = x(1)*x(1)
327 endif
328!
329! Mode = 2 or 3: Derivative values:
330!
331 if ( mode .eq. 2 .or. mode .eq. 3 ) then
332 jac(1) = 2.d0*x(1)
333 endif
334 tria_fdeval = 0
335 else if ( rowno == 2 ) then
336!
337! e2 .. sqr(x2) =E= 1;
338!
339 if ( mode == 1 .or. mode == 3 ) then
340 g = x(2)*x(2)
341 endif
342 if ( mode .eq. 2 .or. mode .eq. 3 ) then
343 jac(2) = 2.d0*x(2)
344 endif
345 tria_fdeval = 0
346 else if ( rowno == 5 ) then
347!
348! e5 .. x3 =E= sqr(x1 + x2);
349!
350 if ( mode == 1 .or. mode == 3 ) then
351 g = -(x(1)+x(2))*(x(1)+x(2))
352 endif
353 if ( mode .eq. 2 .or. mode .eq. 3 ) then
354 jac(1) = -2.d0*(x(1)+x(2))
355 jac(2) = jac(1)
356 endif
357 tria_fdeval = 0
358 else
359 tria_fdeval = 1
360 endif
361
362end Function tria_fdeval
363
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
Definition comdecl.f90:132
integer function std_status(modsta, solsta, iter, objval, usrmem)
Definition comdecl.f90:88
subroutine checkdual(case, minmax)
Definition comdecl.f90:394
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
Definition comdecl.f90:205
integer function std_triord(mode, type, status, irow, icol, inf, value, resid, usrmem)
Definition comdecl.f90:289
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
Definition comdecl.f90:248
integer(c_int) function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
Definition conopt.f90:1265
integer(c_int) function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
Definition conopt.f90:1238
integer(c_int) function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
Definition conopt.f90:1212
integer(c_int) function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
Definition conopt.f90:1111
integer(c_int) function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
Definition conopt.f90:1291
integer(c_int) function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
Definition conopt.f90:1135
integer(c_int) function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
Definition conopt.f90:928
integer(c_int) function coidef_triord(cntvect, coi_triord)
define callback routine for providing the triangular order information.
Definition conopt.f90:1371
integer(c_int) function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
Definition conopt.f90:293
integer(c_int) function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
Definition conopt.f90:97
integer(c_int) function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
Definition conopt.f90:121
integer(c_int) function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
Definition conopt.f90:167
integer(c_int) function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
Definition conopt.f90:213
integer(c_int) function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
Definition conopt.f90:144
integer(c_int) function coidef_objvar(cntvect, objvar)
defines the Objective Variable.
Definition conopt.f90:257
integer(c_int) function coi_create(cntvect)
initializes CONOPT and creates the control vector.
Definition conopt.f90:1726
integer(c_int) function coi_free(cntvect)
frees the control vector.
Definition conopt.f90:1749
integer(c_int) function coi_solve(cntvect)
method for starting the solving process of CONOPT.
Definition conopt.f90:1625
real *8 obj
Definition comdecl.f90:16
integer solcalls
Definition comdecl.f90:15
integer sstat
Definition comdecl.f90:18
integer stacalls
Definition comdecl.f90:14
subroutine flog(msg, code)
Definition comdecl.f90:62
logical do_allocate
Definition comdecl.f90:27
integer, parameter maximize
Definition comdecl.f90:31
integer mstat
Definition comdecl.f90:17
subroutine startup
Definition comdecl.f90:41
integer function tria_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
Definition tria01.f90:253
integer function tria_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
Definition tria01.f90:136
program triabad03
Main program. A simple setup and call of CONOPT.
Definition triabad03.f90:42