CONOPT
Loading...
Searching...
No Matches
triabad03.f90
Go to the documentation of this file.
1!> @file triabad03.f90
2!! @ingroup FORT1THREAD_EXAMPLES
3!!
4!!
5!! This is a CONOPT implementation of the GAMS model:
6!!
7!! @verbatim
8!! variable x1, x2, x3;
9!! equation e1, e2, e3, e4, e5;
10!!
11!! e1 .. sqr(x1) =E= 1;
12!! e2 .. sqr(x2) =E= 1;
13!! e3 .. 1.e-10*x2 =E= 1.e-10;
14!! e4 .. -2.e-10*x2 =E= -2.e-10;
15!! e5 .. x3 =E= sqr(x1 + x2);
16!!
17!! x1.l = 0.99;
18!! x2.l = 0.7;
19!!
20!! model m / all /;
21!! solve m using nlp maximizing x3;
22!! @endverbatim
23!!
24!! The equations e3 and e4 are linear and define x2 to a value
25!! consistent with e2, but the pivots are very small and may give
26!! solution problems.
27!!
28!! Overall, the model is feasible and should end in a locally optimal
29!! point with (x1,x2,x3) = (1,1,4)
30!!
31!!
32!! For more information about the individual callbacks, please have a look at the source code.
33
34!> Main program. A simple setup and call of CONOPT
35!!
36Program triabad03
37
38 Use proginfo
39 Use coidef
40 implicit None
41!
42! Declare the user callback routines as Integer, External:
43!
44 Integer, External :: tria_readmatrix ! Mandatory Matrix definition routine defined below
45 Integer, External :: tria_fdeval ! Function and Derivative evaluation routine
46 ! needed a nonlinear model.
47 Integer, External :: std_status ! Standard callback for displaying solution status
48 Integer, External :: std_solution ! Standard callback for displaying solution values
49 Integer, External :: std_message ! Standard callback for managing messages
50 Integer, External :: std_errmsg ! Standard callback for managing error messages
51 Integer, External :: std_triord ! Standard callback for triangular order
52#if defined(itl)
53!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
54!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
55!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Status
56!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Solution
57!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Message
58!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_ErrMsg
59!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_TriOrd
60#endif
61!
62! Control vector
63!
64 INTEGER :: numcallback
65 INTEGER, Dimension(:), Pointer :: cntvect
66 INTEGER :: coi_error
67
68 Call startup
69!
70! Create and initialize a Control Vector
71!
72 numcallback = coidef_size()
73 Allocate( cntvect(numcallback) )
74 coi_error = coidef_inifort( cntvect )
75!
76! Tell CONOPT about the size of the model by populating the Control Vector:
77!
78 coi_error = max( coi_error, coidef_numvar( cntvect, 3 ) ) ! # variables
79 coi_error = max( coi_error, coidef_numcon( cntvect, 5 ) ) ! # constraints
80 coi_error = max( coi_error, coidef_numnz( cntvect, 7 ) ) ! # nonzeros in the Jacobian
81 coi_error = max( coi_error, coidef_numnlnz( cntvect, 4 ) ) ! # of which are nonlinear
82 coi_error = max( coi_error, coidef_optdir( cntvect, +1 ) ) ! Maximize
83 coi_error = max( coi_error, coidef_objvar( cntvect, 3 ) ) ! Objective is variable 3
84 coi_error = max( coi_error, coidef_optfile( cntvect, 'triabad03.opt' ) )
85!
86! Tell CONOPT about the callback routines:
87!
88 coi_error = max( coi_error, coidef_readmatrix( cntvect, tria_readmatrix ) )
89 coi_error = max( coi_error, coidef_fdeval( cntvect, tria_fdeval ) )
90 coi_error = max( coi_error, coidef_status( cntvect, std_status ) )
91 coi_error = max( coi_error, coidef_solution( cntvect, std_solution ) )
92 coi_error = max( coi_error, coidef_message( cntvect, std_message ) )
93 coi_error = max( coi_error, coidef_errmsg( cntvect, std_errmsg ) )
94 coi_error = max( coi_error, coidef_triord( cntvect, std_triord ) )
95
96#if defined(LICENSE_INT_1) && defined(LICENSE_INT_2) && defined(LICENSE_INT_3) && defined(LICENSE_TEXT)
97 coi_error = max( coi_error, coidef_license( cntvect, license_int_1, license_int_2, license_int_3, license_text) )
98#endif
99
100 If ( coi_error .ne. 0 ) THEN
101 write(*,*)
102 write(*,*) '**** Fatal Error while loading CONOPT Callback routines.'
103 write(*,*)
104 call flog( "Skipping Solve due to setup errors", 1 )
105 ENDIF
106!
107! Save the solution so we can check the duals:
108!
109 do_allocate = .true.
110!
111! Start CONOPT:
112!
113 coi_error = coi_solve( cntvect )
114
115 write(*,*)
116 write(*,*) 'End of Triabad03 example. Return code=',coi_error
117
118 If ( coi_error /= 0 ) then
119 call flog( "Errors encountered during solution", 1 )
120 elseif ( stacalls == 0 .or. solcalls == 0 ) then
121 call flog( "Status or Solution routine was not called", 1 )
122 elseif ( sstat /= 1 .or. mstat /= 2 ) then
123 call flog( "Solver and Model Status was not as expected (1,2)", 1 )
124 elseif ( abs( obj-4.0d0 ) > 0.000001d0 ) then
125 call flog( "Incorrect objective returned", 1 )
126 Else
127 Call checkdual( 'Triabad03', maximize )
128 endif
129
130 if ( coi_free(cntvect) /= 0 ) call flog( "Error while freeing control vector",1)
131
132 call flog( "Successful Solve", 0 )
133
134End Program triabad03
135!
136! ============================================================================
137! Define information about the model:
138!
139
140!> Define information about the model
141!!
142!! @include{doc} readMatrix_params.dox
143Integer Function tria_readmatrix( lower, curr, upper, vsta, type, rhs, esta, &
144 colsta, rowno, value, nlflag, n, m, nz, &
145 usrmem )
146#if defined(itl)
147!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
148#endif
149 implicit none
150 integer, intent (in) :: n ! number of variables
151 integer, intent (in) :: m ! number of constraints
152 integer, intent (in) :: nz ! number of nonzeros
153 real*8, intent (in out), dimension(n) :: lower ! vector of lower bounds
154 real*8, intent (in out), dimension(n) :: curr ! vector of initial values
155 real*8, intent (in out), dimension(n) :: upper ! vector of upper bounds
156 integer, intent (in out), dimension(n) :: vsta ! vector of initial variable status
157 ! (not defined here)
158 integer, intent (out), dimension(m) :: type ! vector of equation types
159 integer, intent (in out), dimension(m) :: esta ! vector of initial equation status
160 ! (not defined here)
161 real*8, intent (in out), dimension(m) :: rhs ! vector of right hand sides
162 integer, intent (in out), dimension(n+1) :: colsta ! vector with start of column indices
163 integer, intent (out), dimension(nz) :: rowno ! vector of row numbers
164 integer, intent (in out), dimension(nz) :: nlflag ! vector of nonlinearity flags
165 real*8, intent (in out), dimension(nz) :: value ! vector of matrix values
166 real*8 usrmem(*) ! optional user memory
167!
168! Information about Variables:
169! Default: Lower = -Inf, Curr = 0, and Upper = +inf.
170! Default: the status information in Vsta is not used.
171!
172! The model uses initial values for x1 and x2
173!
174 curr(1) = 0.99d0
175 curr(2) = 0.70d0
176!
177! Information about Constraints:
178! Default: Rhs = 0
179! Default: the status information in Esta and the function
180! value in FV are not used.
181! Default: Type: There is no default.
182! 0 = Equality,
183! 1 = Greater than or equal,
184! 2 = Less than or equal,
185! 3 = Non binding.
186!
187! Constraint 1: e1
188! Rhs = 1.0 and type Equality
189!
190! e1 .. sqr(x1) =E= 1;
191! e2 .. sqr(x2) =E= 1;
192! e3 .. 1.e-10*x2 =E= 1.e-10;
193! e4 .. -2.e-10*x2 =E= -2.e-10;
194! e5 .. x3 =E= sqr(x1 + x2);
195 rhs(1) = 1.0d0
196 type(1) = 0
197!
198! Constraint 2: e2
199! Rhs = 1.0 and type Equality
200!
201 rhs(2) = 1.0d0
202 type(2) = 0
203!
204! Constraint 3: e3
205! Rhs = 1.0d-10 and type Equality
206!
207 rhs(3) = 1.0d-10
208 type(3) = 0
209!
210! Constraint 4: e4
211! Rhs = -2.0d-10 and type Equality
212!
213 rhs(4) = -2.0d-10
214 type(4) = 0
215!
216! Constraint 5: e5
217! Rhs = 0.0 and type Equality
218!
219 type(5) = 0
220!
221! Information about the Jacobian. We use the standard method with
222! Rowno, Value, Nlflag and Colsta and we do not use Colno.
223!
224! Colsta = Start of column indices (No Defaults):
225! Rowno = Row indices
226! Value = Value of derivative (by default only linear
227! derivatives are used)
228! Nlflag = 0 for linear and 1 for nonlinear derivative
229! (not needed for completely linear models)
230!
231! Indices
232! x(1) x(2) x(3)
233! 1: 1
234! 2: 3
235! 3: 4
236! 4: 5
237! 5: 2 6 7
238!
239 colsta(1) = 1
240 colsta(2) = 3
241 colsta(3) = 7
242 colsta(4) = 8
243 rowno(1) = 1
244 rowno(2) = 5
245 rowno(3) = 2
246 rowno(4) = 3
247 rowno(5) = 4
248 rowno(6) = 5
249 rowno(7) = 5
250!
251! Nonlinearity Structure: L = 0 are linear and NL = 1 are nonlinear
252! x(1) x(2) x(3)
253! 1: NL
254! 2: NL
255! 3: L
256! 4: L
257! 5: NL NL L
258!
259 nlflag(1) = 1
260 nlflag(2) = 1
261 nlflag(3) = 1
262 nlflag(4) = 0
263 nlflag(5) = 0
264 nlflag(6) = 1
265 nlflag(7) = 0
266!
267! Value (Linear only)
268! x(1) x(2) x(3)
269! 1: NL
270! 2: NL
271! 3: 1.0d-10
272! 4: -2.0d-10
273! 5: NL NL 1.0
274! e1 .. sqr(x1) =E= 1;
275! e2 .. sqr(x2) =E= 1;
276! e3 .. 1.e-10*x2 =E= 1.e-10;
277! e4 .. -2.e-10*x2 =E= -2.e-10;
278! e5 .. x3 =E= sqr(x1 + x2);
279!
280 value(4) = 1.d-10
281 value(5) = -2.d-10
282 value(7) = 1.d0
283
284 tria_readmatrix = 0 ! Return value means OK
285
286end Function tria_readmatrix
287!
288!==========================================================================
289! Compute nonlinear terms and non-constant Jacobian elements
290!
291
292!> Compute nonlinear terms and non-constant Jacobian elements
293!!
294!! @include{doc} fdeval_params.dox
295Integer Function tria_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
296 n, nz, thread, usrmem )
297#if defined(itl)
298!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
299#endif
300 implicit none
301 integer, intent (in) :: n ! number of variables
302 integer, intent (in) :: rowno ! number of the row to be evaluated
303 integer, intent (in) :: nz ! number of nonzeros in this row
304 real*8, intent (in), dimension(n) :: x ! vector of current solution values
305 real*8, intent (in out) :: g ! constraint value
306 real*8, intent (in out), dimension(n) :: jac ! vector of derivatives for current constraint
307 integer, intent (in), dimension(nz) :: jcnm ! list of variables that appear nonlinearly
308 ! in this row. Ffor information only.
309 integer, intent (in) :: mode ! evaluation mode: 1 = function value
310 ! 2 = derivatives, 3 = both
311 integer, intent (in) :: ignerr ! if 1 then errors can be ignored as long
312 ! as errcnt is incremented
313 integer, intent (in out) :: errcnt ! error counter to be incremented in case
314 ! of function evaluation errors.
315 integer, intent (in) :: thread
316 real*8 usrmem(*) ! optional user memory
317!
318! Row 1: e1 .. sqr(x1) =E= 1;
319!
320 if ( rowno == 1 ) then
321!
322! Mode = 1 or 3. G = sqr(x1)
323!
324 if ( mode == 1 .or. mode == 3 ) then
325 g = x(1)*x(1)
326 endif
327!
328! Mode = 2 or 3: Derivative values:
329!
330 if ( mode .eq. 2 .or. mode .eq. 3 ) then
331 jac(1) = 2.d0*x(1)
332 endif
333 tria_fdeval = 0
334 else if ( rowno == 2 ) then
335!
336! e2 .. sqr(x2) =E= 1;
337!
338 if ( mode == 1 .or. mode == 3 ) then
339 g = x(2)*x(2)
340 endif
341 if ( mode .eq. 2 .or. mode .eq. 3 ) then
342 jac(2) = 2.d0*x(2)
343 endif
344 tria_fdeval = 0
345 else if ( rowno == 5 ) then
346!
347! e5 .. x3 =E= sqr(x1 + x2);
348!
349 if ( mode == 1 .or. mode == 3 ) then
350 g = -(x(1)+x(2))*(x(1)+x(2))
351 endif
352 if ( mode .eq. 2 .or. mode .eq. 3 ) then
353 jac(1) = -2.d0*(x(1)+x(2))
354 jac(2) = jac(1)
355 endif
356 tria_fdeval = 0
357 else
358 tria_fdeval = 1
359 endif
360
361end Function tria_fdeval
362
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
Definition comdecl.f90:128
integer function std_status(modsta, solsta, iter, objval, usrmem)
Definition comdecl.f90:82
subroutine checkdual(case, minmax)
Definition comdecl.f90:365
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
Definition comdecl.f90:203
integer function std_triord(mode, type, status, irow, icol, inf, value, resid, usrmem)
Definition comdecl.f90:291
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
Definition comdecl.f90:248
integer function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
integer function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
integer function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
integer function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
integer function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
integer function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
integer function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
integer function coidef_triord(cntvect, coi_triord)
define callback routine for providing the triangular order information.
integer function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
Definition coistart.f90:680
integer function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
Definition coistart.f90:358
integer function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
Definition coistart.f90:437
integer function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
Definition coistart.f90:552
integer function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
Definition coistart.f90:476
integer function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
Definition coistart.f90:398
integer function coidef_objvar(cntvect, objvar)
defines the Objective Variable.
Definition coistart.f90:586
integer function coidef_size()
returns the size the Control Vector must have, measured in standard Integer units.
Definition coistart.f90:176
integer function coidef_inifort(cntvect)
initialisation method for Fortran applications.
Definition coistart.f90:314
integer function coi_solve(cntvect)
method for starting the solving process of CONOPT.
Definition coistart.f90:14
real *8 obj
Definition comdecl.f90:10
integer solcalls
Definition comdecl.f90:9
integer sstat
Definition comdecl.f90:12
integer stacalls
Definition comdecl.f90:8
subroutine flog(msg, code)
Definition comdecl.f90:56
logical do_allocate
Definition comdecl.f90:21
integer, parameter maximize
Definition comdecl.f90:25
integer mstat
Definition comdecl.f90:11
subroutine startup
Definition comdecl.f90:35
integer function tria_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
Definition tria01.f90:265
integer function tria_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
Definition tria01.f90:145
program triabad03
Main program. A simple setup and call of CONOPT.
Definition triabad03.f90:36