CONOPT
Loading...
Searching...
No Matches
triabad05.f90
Go to the documentation of this file.
1!> @file triabad05.f90
2!! @ingroup FORT1THREAD_EXAMPLES
3!!
4!! This is a CONOPT implementation of the GAMS model:
5!!
6!! @verbatim
7!! variable x1, x2, x3;
8!! equation e1, e3, e4, e5;
9!!
10!! e1 .. sqr(x1) =E= 1;
11!! e3 .. 1*x2 =E= 1;
12!! e4 .. -2.e-10*x2 =E= -1.e-10;
13!! e5 .. x3 =E= sqr(x1 + x2);
14!!
15!! x1.l = 0.99;
16!! x2.l = 0.7;
17!!
18!! model m / all /;
19!! solve m using nlp maximizing x3;
20!! @endverbatim
21!!
22!! Equation e3 defines x2 = 1 and e4 defines x2 = 0.5, and this seems to
23!! be inconsistent. However, inconsistency is measured in the constraint
24!! violation space and with x2 = 1 (from e3 which has the largest pivot)
25!! the infeasibility in e4 is only 0.5e-10, which is below the
26!! triangular tolerance in rtnwtr.
27!!
28!! Overall, the model is feasible and should end in a locally optimal
29!! point with (x1,x2,x3) = (1,1,4)
30!!
31!! In a second solve we reduce Rtnwtr to 1.e-11 and the model should
32!! become infeasible. Since the involved constraints are linear the
33!! infeasibility is global (model status = 4).
34!!
35!!
36!! For more information about the individual callbacks, please have a look at the source code.
37
38!> Main program. A simple setup and call of CONOPT
39!!
40Program triabad05
41
42 Use proginfo
43 Use coidef
44 implicit None
45!
46! Declare the user callback routines as Integer, External:
47!
48 Integer, External :: tria_readmatrix ! Mandatory Matrix definition routine defined below
49 Integer, External :: tria_fdeval ! Function and Derivative evaluation routine
50 ! needed a nonlinear model.
51 Integer, External :: std_status ! Standard callback for displaying solution status
52 Integer, External :: std_solution ! Standard callback for displaying solution values
53 Integer, External :: std_message ! Standard callback for managing messages
54 Integer, External :: std_errmsg ! Standard callback for managing error messages
55 Integer, External :: std_triord ! Standard callback for triangular order
56#if defined(itl)
57!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
58!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
59!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Status
60!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Solution
61!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Message
62!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_ErrMsg
63!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_TriOrd
64#endif
65!
66! Control vector
67!
68 INTEGER :: numcallback
69 INTEGER, Dimension(:), Pointer :: cntvect
70 INTEGER :: coi_error
71
72 call startup
73!
74! Create and initialize a Control Vector
75!
76 numcallback = coidef_size()
77 Allocate( cntvect(numcallback) )
78 coi_error = coidef_inifort( cntvect )
79!
80! Tell CONOPT about the size of the model by populating the Control Vector:
81!
82 coi_error = max( coi_error, coidef_numvar( cntvect, 3 ) ) ! # variables
83 coi_error = max( coi_error, coidef_numcon( cntvect, 4 ) ) ! # constraints
84 coi_error = max( coi_error, coidef_numnz( cntvect, 6 ) ) ! # nonzeros in the Jacobian
85 coi_error = max( coi_error, coidef_numnlnz( cntvect, 3 ) ) ! # of which are nonlinear
86 coi_error = max( coi_error, coidef_optdir( cntvect, +1 ) ) ! Maximize
87 coi_error = max( coi_error, coidef_objvar( cntvect, 3 ) ) ! Objective is variable 3
88 coi_error = max( coi_error, coidef_optfile( cntvect, 'triabad05.opt' ) )
89!
90! Tell CONOPT about the callback routines:
91!
92 coi_error = max( coi_error, coidef_readmatrix( cntvect, tria_readmatrix ) )
93 coi_error = max( coi_error, coidef_fdeval( cntvect, tria_fdeval ) )
94 coi_error = max( coi_error, coidef_status( cntvect, std_status ) )
95 coi_error = max( coi_error, coidef_solution( cntvect, std_solution ) )
96 coi_error = max( coi_error, coidef_message( cntvect, std_message ) )
97 coi_error = max( coi_error, coidef_errmsg( cntvect, std_errmsg ) )
98 coi_error = max( coi_error, coidef_triord( cntvect, std_triord ) )
99
100#if defined(LICENSE_INT_1) && defined(LICENSE_INT_2) && defined(LICENSE_INT_3) && defined(LICENSE_TEXT)
101 coi_error = max( coi_error, coidef_license( cntvect, license_int_1, license_int_2, license_int_3, license_text) )
102#endif
103
104 If ( coi_error .ne. 0 ) THEN
105 write(*,*)
106 write(*,*) '**** Fatal Error while loading CONOPT Callback routines.'
107 write(*,*)
108 call flog( "Skipping Solve due to setup errors", 1 )
109 ENDIF
110!
111! Create an empty options file for the first solve
112!
113 open(12,file='triabad05.opt')
114 write(12,*) '! Empty triabad05.opt file created by main program'
115 close(12)
116!
117! Save the solution so we can check the duals:
118!
119 do_allocate = .true.
120!
121! Start CONOPT:
122!
123 coi_error = coi_solve( cntvect )
124
125 If ( coi_error /= 0 ) then
126 call flog( "Errors encountered during solution", 1 )
127 elseif ( stacalls == 0 .or. solcalls == 0 ) then
128 call flog( "Status or Solution routine was not called", 1 )
129 elseif ( sstat /= 1 .or. mstat /= 2 ) then
130 call flog( "Solver and Model Status was not as expected (1,2)", 1 )
131 elseif ( abs( obj-4.0d0 ) > 0.000001d0 ) then
132 call flog( "Incorrect objective returned", 1 )
133 Else
134 Call checkdual( 'Triabad05', maximize )
135 endif
136!
137! Create an options file with Rtnwtr = 1.e-11 for the second solve
138!
139 open(12,file='triabad05.opt')
140 write(12,*) '! Non-empty triabad05.opt file created by main program'
141 write(12,*) 'Rtnwtr = 1.e-11'
142 close(12)
143
144 coi_error = coi_solve( cntvect )
145
146 If ( coi_error /= 0 ) then
147 call flog( "Errors encountered during solution", 1 )
148 elseif ( stacalls == 0 .or. solcalls == 0 ) then
149 call flog( "Status or Solution routine was not called", 1 )
150 elseif ( sstat /= 1 .or. mstat /= 4 ) then
151 call flog( "Solver and Model Status was not as expected (1,4)", 1 )
152! No objective test for infeasible model
153 Else
154 Call checkdual( 'Triabad05', infeasible )
155 endif
156
157 write(*,*)
158 write(*,*) 'End of Triabad05 example. Return code=',coi_error
159
160 if ( coi_free(cntvect) /= 0 ) call flog( "Error while freeing control vector",1)
161
162 call flog( "Successful Solve", 0 )
163
164End Program triabad05
165!
166! ============================================================================
167! Define information about the model:
168!
169
170!> Define information about the model
171!!
172!! @include{doc} readMatrix_params.dox
173Integer Function tria_readmatrix( lower, curr, upper, vsta, type, rhs, esta, &
174 colsta, rowno, value, nlflag, n, m, nz, &
175 usrmem )
176#if defined(itl)
177!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
178#endif
179 implicit none
180 integer, intent (in) :: n ! number of variables
181 integer, intent (in) :: m ! number of constraints
182 integer, intent (in) :: nz ! number of nonzeros
183 real*8, intent (in out), dimension(n) :: lower ! vector of lower bounds
184 real*8, intent (in out), dimension(n) :: curr ! vector of initial values
185 real*8, intent (in out), dimension(n) :: upper ! vector of upper bounds
186 integer, intent (in out), dimension(n) :: vsta ! vector of initial variable status
187 ! (not defined here)
188 integer, intent (out), dimension(m) :: type ! vector of equation types
189 integer, intent (in out), dimension(m) :: esta ! vector of initial equation status
190 ! (not defined here)
191 real*8, intent (in out), dimension(m) :: rhs ! vector of right hand sides
192 integer, intent (in out), dimension(n+1) :: colsta ! vector with start of column indices
193 integer, intent (out), dimension(nz) :: rowno ! vector of row numbers
194 integer, intent (in out), dimension(nz) :: nlflag ! vector of nonlinearity flags
195 real*8, intent (in out), dimension(nz) :: value ! vector of matrix values
196 real*8 usrmem(*) ! optional user memory
197!
198! Information about Variables:
199! Default: Lower = -Inf, Curr = 0, and Upper = +inf.
200! Default: the status information in Vsta is not used.
201!
202! The model uses initial values for x1 and x2
203!
204 curr(1) = 0.99d0
205 curr(2) = 0.70d0
206!
207! Information about Constraints:
208! Default: Rhs = 0
209! Default: the status information in Esta and the function
210! value in FV are not used.
211! Default: Type: There is no default.
212! 0 = Equality,
213! 1 = Greater than or equal,
214! 2 = Less than or equal,
215! 3 = Non binding.
216!
217! Constraint 1: e1
218! Rhs = 1.0 and type Equality
219!
220 rhs(1) = 1.0d0
221 type(1) = 0
222!
223! Constraint 2: e3
224! Rhs = 1.0 and type Equality
225!
226 rhs(2) = 1.0d0
227 type(2) = 0
228!
229! Constraint 3: e4
230! Rhs = -1.0d-10 and type Equality
231!
232 rhs(3) = -1.0d-10
233 type(3) = 0
234!
235! Constraint 4: e5
236! Rhs = 0.0 and type Equality
237!
238 type(4) = 0
239!
240! Information about the Jacobian. We use the standard method with
241! Rowno, Value, Nlflag and Colsta and we do not use Colno.
242!
243! Colsta = Start of column indices (No Defaults):
244! Rowno = Row indices
245! Value = Value of derivative (by default only linear
246! derivatives are used)
247! Nlflag = 0 for linear and 1 for nonlinear derivative
248! (not needed for completely linear models)
249!
250! Indices
251! x(1) x(2) x(3)
252! 1: 1
253! 2: 3
254! 3: 4
255! 4: 2 5 6
256!
257 colsta(1) = 1
258 colsta(2) = 3
259 colsta(3) = 6
260 colsta(4) = 7
261 rowno(1) = 1
262 rowno(2) = 4
263 rowno(3) = 2
264 rowno(4) = 3
265 rowno(5) = 4
266 rowno(6) = 4
267!
268! Nonlinearity Structure: L = 0 are linear and NL = 1 are nonlinear
269! x(1) x(2) x(3)
270! 1: NL
271! 2: L
272! 3: L
273! 4: NL NL L
274!
275 nlflag(1) = 1
276 nlflag(2) = 1
277 nlflag(3) = 0
278 nlflag(4) = 0
279 nlflag(5) = 1
280 nlflag(6) = 0
281!
282! Value (Linear only)
283! x(1) x(2) x(3)
284! 1: NL
285! 2: 1
286! 3: -2.0d-10
287! 4: NL NL 1.0
288!
289 value(3) = 1.d0
290 value(4) = -2.0d-10
291 value(6) = 1.d0
292
293 tria_readmatrix = 0 ! Return value means OK
294
295end Function tria_readmatrix
296!
297!==========================================================================
298! Compute nonlinear terms and non-constant Jacobian elements
299!
300
301!> Compute nonlinear terms and non-constant Jacobian elements
302!!
303!! @include{doc} fdeval_params.dox
304Integer Function tria_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
305 n, nz, thread, usrmem )
306#if defined(itl)
307!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
308#endif
309 implicit none
310 integer, intent (in) :: n ! number of variables
311 integer, intent (in) :: rowno ! number of the row to be evaluated
312 integer, intent (in) :: nz ! number of nonzeros in this row
313 real*8, intent (in), dimension(n) :: x ! vector of current solution values
314 real*8, intent (in out) :: g ! constraint value
315 real*8, intent (in out), dimension(n) :: jac ! vector of derivatives for current constraint
316 integer, intent (in), dimension(nz) :: jcnm ! list of variables that appear nonlinearly
317 ! in this row. Ffor information only.
318 integer, intent (in) :: mode ! evaluation mode: 1 = function value
319 ! 2 = derivatives, 3 = both
320 integer, intent (in) :: ignerr ! if 1 then errors can be ignored as long
321 ! as errcnt is incremented
322 integer, intent (in out) :: errcnt ! error counter to be incremented in case
323 ! of function evaluation errors.
324 integer, intent (in) :: thread
325 real*8 usrmem(*) ! optional user memory
326!
327! Row 1: e1 .. sqr(x1) =E= 1;
328!
329 if ( rowno == 1 ) then
330!
331! Mode = 1 or 3. G = sqr(x1)
332!
333 if ( mode == 1 .or. mode == 3 ) then
334 g = x(1)*x(1)
335 endif
336!
337! Mode = 2 or 3: Derivative values:
338!
339 if ( mode .eq. 2 .or. mode .eq. 3 ) then
340 jac(1) = 2.d0*x(1)
341 endif
342 tria_fdeval = 0
343 else if ( rowno == 4 ) then
344!
345! e5 .. x3 =E= sqr(x1 + x2);
346!
347 if ( mode == 1 .or. mode == 3 ) then
348 g = -(x(1)+x(2))*(x(1)+x(2))
349 endif
350 if ( mode .eq. 2 .or. mode .eq. 3 ) then
351 jac(1) = -2.d0*(x(1)+x(2))
352 jac(2) = jac(1)
353 endif
354 tria_fdeval = 0
355 else
356 tria_fdeval = 1
357 endif
358
359end Function tria_fdeval
360
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
Definition comdecl.f90:128
integer function std_status(modsta, solsta, iter, objval, usrmem)
Definition comdecl.f90:82
subroutine checkdual(case, minmax)
Definition comdecl.f90:365
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
Definition comdecl.f90:203
integer function std_triord(mode, type, status, irow, icol, inf, value, resid, usrmem)
Definition comdecl.f90:291
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
Definition comdecl.f90:248
integer function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
integer function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
integer function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
integer function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
integer function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
integer function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
integer function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
integer function coidef_triord(cntvect, coi_triord)
define callback routine for providing the triangular order information.
integer function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
Definition coistart.f90:680
integer function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
Definition coistart.f90:358
integer function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
Definition coistart.f90:437
integer function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
Definition coistart.f90:552
integer function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
Definition coistart.f90:476
integer function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
Definition coistart.f90:398
integer function coidef_objvar(cntvect, objvar)
defines the Objective Variable.
Definition coistart.f90:586
integer function coidef_size()
returns the size the Control Vector must have, measured in standard Integer units.
Definition coistart.f90:176
integer function coidef_inifort(cntvect)
initialisation method for Fortran applications.
Definition coistart.f90:314
integer function coi_solve(cntvect)
method for starting the solving process of CONOPT.
Definition coistart.f90:14
real *8 obj
Definition comdecl.f90:10
integer solcalls
Definition comdecl.f90:9
integer sstat
Definition comdecl.f90:12
integer, parameter infeasible
Definition comdecl.f90:25
integer stacalls
Definition comdecl.f90:8
subroutine flog(msg, code)
Definition comdecl.f90:56
logical do_allocate
Definition comdecl.f90:21
integer, parameter maximize
Definition comdecl.f90:25
integer mstat
Definition comdecl.f90:11
subroutine startup
Definition comdecl.f90:35
integer function tria_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
Definition tria01.f90:265
integer function tria_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
Definition tria01.f90:145
program triabad05
Main program. A simple setup and call of CONOPT.
Definition triabad05.f90:40