CONOPT
Loading...
Searching...
No Matches
triabad05.f90
Go to the documentation of this file.
1!> @file triabad05.f90
2!! @ingroup FORT1THREAD_EXAMPLES
3!!
4!! This is a CONOPT implementation of the GAMS model:
5!!
6!! @verbatim
7!! variable x1, x2, x3;
8!! equation e1, e3, e4, e5;
9!!
10!! e1 .. sqr(x1) =E= 1;
11!! e3 .. 1*x2 =E= 1;
12!! e4 .. -2.e-10*x2 =E= -1.e-10;
13!! e5 .. x3 =E= sqr(x1 + x2);
14!!
15!! x1.l = 0.99;
16!! x2.l = 0.7;
17!!
18!! model m / all /;
19!! solve m using nlp maximizing x3;
20!! @endverbatim
21!!
22!! Equation e3 defines x2 = 1 and e4 defines x2 = 0.5, and this seems to
23!! be inconsistent. However, inconsistency is measured in the constraint
24!! violation space and with x2 = 1 (from e3 which has the largest pivot)
25!! the infeasibility in e4 is only 0.5e-10, which is below the
26!! triangular tolerance in rtnwtr.
27!!
28!! Overall, the model is feasible and should end in a locally optimal
29!! point with (x1,x2,x3) = (1,1,4)
30!!
31!! In a second solve we reduce Rtnwtr to 1.e-11 and the model should
32!! become infeasible. Since the involved constraints are linear the
33!! infeasibility is global (model status = 4).
34!!
35!!
36!! For more information about the individual callbacks, please have a look at the source code.
37
38#if defined(_WIN32) && !defined(_WIN64)
39#define dec_directives_win32
40#endif
41
42!> Main program. A simple setup and call of CONOPT
43!!
44Program triabad05
45
47 Use conopt
48 implicit None
49!
50! Declare the user callback routines as Integer, External:
51!
52 Integer, External :: tria_readmatrix ! Mandatory Matrix definition routine defined below
53 Integer, External :: tria_fdeval ! Function and Derivative evaluation routine
54 ! needed a nonlinear model.
55 Integer, External :: std_status ! Standard callback for displaying solution status
56 Integer, External :: std_solution ! Standard callback for displaying solution values
57 Integer, External :: std_message ! Standard callback for managing messages
58 Integer, External :: std_errmsg ! Standard callback for managing error messages
59 Integer, External :: std_triord ! Standard callback for triangular order
60#ifdef dec_directives_win32
61!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
62!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
63!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Status
64!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Solution
65!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Message
66!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_ErrMsg
67!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_TriOrd
68#endif
69!
70! Control vector
71!
72 INTEGER, Dimension(:), Pointer :: cntvect
73 INTEGER :: coi_error
74
75 call startup
76!
77! Create and initialize a Control Vector
78!
79 coi_error = coi_create( cntvect )
80!
81! Tell CONOPT about the size of the model by populating the Control Vector:
82!
83 coi_error = max( coi_error, coidef_numvar( cntvect, 3 ) ) ! # variables
84 coi_error = max( coi_error, coidef_numcon( cntvect, 4 ) ) ! # constraints
85 coi_error = max( coi_error, coidef_numnz( cntvect, 6 ) ) ! # nonzeros in the Jacobian
86 coi_error = max( coi_error, coidef_numnlnz( cntvect, 3 ) ) ! # of which are nonlinear
87 coi_error = max( coi_error, coidef_optdir( cntvect, +1 ) ) ! Maximize
88 coi_error = max( coi_error, coidef_objvar( cntvect, 3 ) ) ! Objective is variable 3
89 coi_error = max( coi_error, coidef_optfile( cntvect, 'triabad05.opt' ) )
90!
91! Tell CONOPT about the callback routines:
92!
93 coi_error = max( coi_error, coidef_readmatrix( cntvect, tria_readmatrix ) )
94 coi_error = max( coi_error, coidef_fdeval( cntvect, tria_fdeval ) )
95 coi_error = max( coi_error, coidef_status( cntvect, std_status ) )
96 coi_error = max( coi_error, coidef_solution( cntvect, std_solution ) )
97 coi_error = max( coi_error, coidef_message( cntvect, std_message ) )
98 coi_error = max( coi_error, coidef_errmsg( cntvect, std_errmsg ) )
99 coi_error = max( coi_error, coidef_triord( cntvect, std_triord ) )
100
101#if defined(CONOPT_LICENSE_INT_1) && defined(CONOPT_LICENSE_INT_2) && defined(CONOPT_LICENSE_INT_3) && defined(CONOPT_LICENSE_TEXT)
102 coi_error = max( coi_error, coidef_license( cntvect, conopt_license_int_1, conopt_license_int_2, conopt_license_int_3, conopt_license_text) )
103#endif
104
105 If ( coi_error .ne. 0 ) THEN
106 write(*,*)
107 write(*,*) '**** Fatal Error while loading CONOPT Callback routines.'
108 write(*,*)
109 call flog( "Skipping Solve due to setup errors", 1 )
110 ENDIF
111!
112! Create an empty options file for the first solve
113!
114 open(12,file='triabad05.opt')
115 write(12,*) '! Empty triabad05.opt file created by main program'
116 close(12)
117!
118! Save the solution so we can check the duals:
119!
120 do_allocate = .true.
121!
122! Start CONOPT:
123!
124 coi_error = coi_solve( cntvect )
125
126 If ( coi_error /= 0 ) then
127 call flog( "Errors encountered during solution", 1 )
128 elseif ( stacalls == 0 .or. solcalls == 0 ) then
129 call flog( "Status or Solution routine was not called", 1 )
130 elseif ( sstat /= 1 .or. mstat /= 2 ) then
131 call flog( "Solver and Model Status was not as expected (1,2)", 1 )
132 elseif ( abs( obj-4.0d0 ) > 0.000001d0 ) then
133 call flog( "Incorrect objective returned", 1 )
134 Else
135 Call checkdual( 'Triabad05', maximize )
136 endif
137!
138! Create an options file with Rtnwtr = 1.e-11 for the second solve
139!
140 open(12,file='triabad05.opt')
141 write(12,*) '! Non-empty triabad05.opt file created by main program'
142 write(12,*) 'Rtnwtr = 1.e-11'
143 close(12)
144
145 coi_error = coi_solve( cntvect )
146
147 If ( coi_error /= 0 ) then
148 call flog( "Errors encountered during solution", 1 )
149 elseif ( stacalls == 0 .or. solcalls == 0 ) then
150 call flog( "Status or Solution routine was not called", 1 )
151 elseif ( sstat /= 1 .or. mstat /= 4 ) then
152 call flog( "Solver and Model Status was not as expected (1,4)", 1 )
153! No objective test for infeasible model
154 Else
155 Call checkdual( 'Triabad05', infeasible )
156 endif
157
158 write(*,*)
159 write(*,*) 'End of Triabad05 example. Return code=',coi_error
160
161 if ( coi_free(cntvect) /= 0 ) call flog( "Error while freeing control vector",1)
162
163 call flog( "Successful Solve", 0 )
165End Program triabad05
166!
167! ============================================================================
168! Define information about the model:
169!
170
171!> Define information about the model
172!!
173!! @include{doc} readMatrix_params.dox
174Integer Function tria_readmatrix( lower, curr, upper, vsta, type, rhs, esta, &
175 colsta, rowno, value, nlflag, n, m, nz, &
176 usrmem )
177#ifdef dec_directives_win32
178!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
179#endif
180 implicit none
181 integer, intent (in) :: n ! number of variables
182 integer, intent (in) :: m ! number of constraints
183 integer, intent (in) :: nz ! number of nonzeros
184 real*8, intent (in out), dimension(n) :: lower ! vector of lower bounds
185 real*8, intent (in out), dimension(n) :: curr ! vector of initial values
186 real*8, intent (in out), dimension(n) :: upper ! vector of upper bounds
187 integer, intent (in out), dimension(n) :: vsta ! vector of initial variable status
188 ! (not defined here)
189 integer, intent (out), dimension(m) :: type ! vector of equation types
190 integer, intent (in out), dimension(m) :: esta ! vector of initial equation status
191 ! (not defined here)
192 real*8, intent (in out), dimension(m) :: rhs ! vector of right hand sides
193 integer, intent (in out), dimension(n+1) :: colsta ! vector with start of column indices
194 integer, intent (out), dimension(nz) :: rowno ! vector of row numbers
195 integer, intent (in out), dimension(nz) :: nlflag ! vector of nonlinearity flags
196 real*8, intent (in out), dimension(nz) :: value ! vector of matrix values
197 real*8 usrmem(*) ! optional user memory
198!
199! Information about Variables:
200! Default: Lower = -Inf, Curr = 0, and Upper = +inf.
201! Default: the status information in Vsta is not used.
202!
203! The model uses initial values for x1 and x2
204!
205 curr(1) = 0.99d0
206 curr(2) = 0.70d0
207!
208! Information about Constraints:
209! Default: Rhs = 0
210! Default: the status information in Esta and the function
211! value in FV are not used.
212! Default: Type: There is no default.
213! 0 = Equality,
214! 1 = Greater than or equal,
215! 2 = Less than or equal,
216! 3 = Non binding.
217!
218! Constraint 1: e1
219! Rhs = 1.0 and type Equality
220!
221 rhs(1) = 1.0d0
222 type(1) = 0
223!
224! Constraint 2: e3
225! Rhs = 1.0 and type Equality
226!
227 rhs(2) = 1.0d0
228 type(2) = 0
229!
230! Constraint 3: e4
231! Rhs = -1.0d-10 and type Equality
232!
233 rhs(3) = -1.0d-10
234 type(3) = 0
235!
236! Constraint 4: e5
237! Rhs = 0.0 and type Equality
238!
239 type(4) = 0
240!
241! Information about the Jacobian. CONOPT expects a columnwise
242! representation in Rowno, Value, Nlflag and Colsta.
243!
244! Colsta = Start of column indices (No Defaults):
245! Rowno = Row indices
246! Value = Value of derivative (by default only linear
247! derivatives are used)
248! Nlflag = 0 for linear and 1 for nonlinear derivative
249! (not needed for completely linear models)
250!
251! Indices
252! x(1) x(2) x(3)
253! 1: 1
254! 2: 3
255! 3: 4
256! 4: 2 5 6
257!
258 colsta(1) = 1
259 colsta(2) = 3
260 colsta(3) = 6
261 colsta(4) = 7
262 rowno(1) = 1
263 rowno(2) = 4
264 rowno(3) = 2
265 rowno(4) = 3
266 rowno(5) = 4
267 rowno(6) = 4
268!
269! Nonlinearity Structure: L = 0 are linear and NL = 1 are nonlinear
270! x(1) x(2) x(3)
271! 1: NL
272! 2: L
273! 3: L
274! 4: NL NL L
275!
276 nlflag(1) = 1
277 nlflag(2) = 1
278 nlflag(3) = 0
279 nlflag(4) = 0
280 nlflag(5) = 1
281 nlflag(6) = 0
282!
283! Value (Linear only)
284! x(1) x(2) x(3)
285! 1: NL
286! 2: 1
287! 3: -2.0d-10
288! 4: NL NL 1.0
289!
290 value(3) = 1.d0
291 value(4) = -2.0d-10
292 value(6) = 1.d0
293
294 tria_readmatrix = 0 ! Return value means OK
295
296end Function tria_readmatrix
297!
298!==========================================================================
299! Compute nonlinear terms and non-constant Jacobian elements
300!
301
302!> Compute nonlinear terms and non-constant Jacobian elements
303!!
304!! @include{doc} fdeval_params.dox
305Integer Function tria_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
306 n, nz, thread, usrmem )
307#ifdef dec_directives_win32
308!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
309#endif
310 implicit none
311 integer, intent (in) :: n ! number of variables
312 integer, intent (in) :: rowno ! number of the row to be evaluated
313 integer, intent (in) :: nz ! number of nonzeros in this row
314 real*8, intent (in), dimension(n) :: x ! vector of current solution values
315 real*8, intent (in out) :: g ! constraint value
316 real*8, intent (in out), dimension(n) :: jac ! vector of derivatives for current constraint
317 integer, intent (in), dimension(nz) :: jcnm ! list of variables that appear nonlinearly
318 ! in this row. Ffor information only.
319 integer, intent (in) :: mode ! evaluation mode: 1 = function value
320 ! 2 = derivatives, 3 = both
321 integer, intent (in) :: ignerr ! if 1 then errors can be ignored as long
322 ! as errcnt is incremented
323 integer, intent (in out) :: errcnt ! error counter to be incremented in case
324 ! of function evaluation errors.
325 integer, intent (in) :: thread
326 real*8 usrmem(*) ! optional user memory
327!
328! Row 1: e1 .. sqr(x1) =E= 1;
329!
330 if ( rowno == 1 ) then
331!
332! Mode = 1 or 3. G = sqr(x1)
333!
334 if ( mode == 1 .or. mode == 3 ) then
335 g = x(1)*x(1)
336 endif
337!
338! Mode = 2 or 3: Derivative values:
339!
340 if ( mode .eq. 2 .or. mode .eq. 3 ) then
341 jac(1) = 2.d0*x(1)
342 endif
343 tria_fdeval = 0
344 else if ( rowno == 4 ) then
345!
346! e5 .. x3 =E= sqr(x1 + x2);
347!
348 if ( mode == 1 .or. mode == 3 ) then
349 g = -(x(1)+x(2))*(x(1)+x(2))
350 endif
351 if ( mode .eq. 2 .or. mode .eq. 3 ) then
352 jac(1) = -2.d0*(x(1)+x(2))
353 jac(2) = jac(1)
354 endif
355 tria_fdeval = 0
356 else
357 tria_fdeval = 1
358 endif
359
360end Function tria_fdeval
361
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
Definition comdecl.f90:132
integer function std_status(modsta, solsta, iter, objval, usrmem)
Definition comdecl.f90:88
subroutine checkdual(case, minmax)
Definition comdecl.f90:394
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
Definition comdecl.f90:205
integer function std_triord(mode, type, status, irow, icol, inf, value, resid, usrmem)
Definition comdecl.f90:289
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
Definition comdecl.f90:248
integer(c_int) function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
Definition conopt.f90:1265
integer(c_int) function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
Definition conopt.f90:1238
integer(c_int) function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
Definition conopt.f90:1212
integer(c_int) function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
Definition conopt.f90:1111
integer(c_int) function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
Definition conopt.f90:1291
integer(c_int) function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
Definition conopt.f90:1135
integer(c_int) function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
Definition conopt.f90:928
integer(c_int) function coidef_triord(cntvect, coi_triord)
define callback routine for providing the triangular order information.
Definition conopt.f90:1371
integer(c_int) function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
Definition conopt.f90:293
integer(c_int) function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
Definition conopt.f90:97
integer(c_int) function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
Definition conopt.f90:121
integer(c_int) function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
Definition conopt.f90:167
integer(c_int) function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
Definition conopt.f90:213
integer(c_int) function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
Definition conopt.f90:144
integer(c_int) function coidef_objvar(cntvect, objvar)
defines the Objective Variable.
Definition conopt.f90:257
integer(c_int) function coi_create(cntvect)
initializes CONOPT and creates the control vector.
Definition conopt.f90:1726
integer(c_int) function coi_free(cntvect)
frees the control vector.
Definition conopt.f90:1749
integer(c_int) function coi_solve(cntvect)
method for starting the solving process of CONOPT.
Definition conopt.f90:1625
real *8 obj
Definition comdecl.f90:16
integer solcalls
Definition comdecl.f90:15
integer sstat
Definition comdecl.f90:18
integer, parameter infeasible
Definition comdecl.f90:31
integer stacalls
Definition comdecl.f90:14
subroutine flog(msg, code)
Definition comdecl.f90:62
logical do_allocate
Definition comdecl.f90:27
integer, parameter maximize
Definition comdecl.f90:31
integer mstat
Definition comdecl.f90:17
subroutine startup
Definition comdecl.f90:41
integer function tria_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
Definition tria01.f90:253
integer function tria_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
Definition tria01.f90:136
program triabad05
Main program. A simple setup and call of CONOPT.
Definition triabad05.f90:46