CONOPT
Loading...
Searching...
No Matches
triabad07.f90
Go to the documentation of this file.
1!> @file triabad07.f90
2!! @ingroup FORT1THREAD_EXAMPLES
3!!
4!!
5!! Similar to triabad01 but with different constant coefficients in e3 and e4.
6!!
7!! This is a CONOPT implementation of the GAMS model:
8!!
9!! @verbatim
10!! variable x1, x2, x3;
11!! equation e1, e2, e3, e4, e5;
12!!
13!! e1 .. sqr(x1) =E= 1;
14!! e2 .. sqr(x2) =E= 1;
15!! e3 .. sqr(x1) + 3*x2 =E= 4;
16!! e4 .. sqr(x1) + x2 =E= 3.5;
17!! e5 .. x3 =E= sqr(x1 + x2);
18!!
19!! x1.l = 0.99;
20!! x2.l = 0.7;
21!!
22!! model m / all /;
23!! solve m using nlp maximizing x3;
24!! @endverbatim
25!!
26!! e1 and e2 defines x1 and x2, respectively.
27!! e3 is then feasible without any free variables, but
28!! e4 is infeasible without any free variables, i.e. inconsistent.
29!!
30!!
31!! For more information about the individual callbacks, please have a look at the source code.
32
33#if defined(_WIN32) && !defined(_WIN64)
34#define dec_directives_win32
35#endif
36
37!> Main program. A simple setup and call of CONOPT
38!!
39Program triabad07
40
42 Use conopt
43 implicit None
44!
45! Declare the user callback routines as Integer, External:
46!
47 Integer, External :: tria_readmatrix ! Mandatory Matrix definition routine defined below
48 Integer, External :: tria_fdeval ! Function and Derivative evaluation routine
49 ! needed a nonlinear model.
50 Integer, External :: std_status ! Standard callback for displaying solution status
51 Integer, External :: std_solution ! Standard callback for displaying solution values
52 Integer, External :: std_message ! Standard callback for managing messages
53 Integer, External :: std_errmsg ! Standard callback for managing error messages
54 Integer, External :: std_triord ! Standard callback for triangular order
55#ifdef dec_directives_win32
56!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
57!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
58!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Status
59!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Solution
60!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Message
61!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_ErrMsg
62!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_TriOrd
63#endif
64!
65! Control vector
66!
67 INTEGER, Dimension(:), Pointer :: cntvect
68 INTEGER :: coi_error
69
70 call startup
71!
72! Create and initialize a Control Vector
73!
74 coi_error = coi_create( cntvect )
75!
76! Tell CONOPT about the size of the model by populating the Control Vector:
77!
78 coi_error = max( coi_error, coidef_numvar( cntvect, 3 ) ) ! # variables
79 coi_error = max( coi_error, coidef_numcon( cntvect, 5 ) ) ! # constraints
80 coi_error = max( coi_error, coidef_numnz( cntvect, 9 ) ) ! # nonzeros in the Jacobian
81 coi_error = max( coi_error, coidef_numnlnz( cntvect, 6 ) ) ! # of which are nonlinear
82 coi_error = max( coi_error, coidef_optdir( cntvect, -1 ) ) ! Minimize
83 coi_error = max( coi_error, coidef_objvar( cntvect, 3 ) ) ! Objective is variable 3
84 coi_error = max( coi_error, coidef_optfile( cntvect, 'triabad07.opt' ) )
85!
86! Tell CONOPT about the callback routines:
87!
88 coi_error = max( coi_error, coidef_readmatrix( cntvect, tria_readmatrix ) )
89 coi_error = max( coi_error, coidef_fdeval( cntvect, tria_fdeval ) )
90 coi_error = max( coi_error, coidef_status( cntvect, std_status ) )
91 coi_error = max( coi_error, coidef_solution( cntvect, std_solution ) )
92 coi_error = max( coi_error, coidef_message( cntvect, std_message ) )
93 coi_error = max( coi_error, coidef_errmsg( cntvect, std_errmsg ) )
94 coi_error = max( coi_error, coidef_triord( cntvect, std_triord ) )
95
96#if defined(CONOPT_LICENSE_INT_1) && defined(CONOPT_LICENSE_INT_2) && defined(CONOPT_LICENSE_INT_3) && defined(CONOPT_LICENSE_TEXT)
97 coi_error = max( coi_error, coidef_license( cntvect, conopt_license_int_1, conopt_license_int_2, conopt_license_int_3, conopt_license_text) )
98#endif
99
100 If ( coi_error .ne. 0 ) THEN
101 write(*,*)
102 write(*,*) '**** Fatal Error while loading CONOPT Callback routines.'
103 write(*,*)
104 call flog( "Skipping Solve due to setup errors", 1 )
105 ENDIF
106!
107! Save the solution so we can check the duals:
108!
109 do_allocate = .true.
110!
111! Start CONOPT:
112!
113 coi_error = coi_solve( cntvect )
114
115 write(*,*)
116 write(*,*) 'End of Triabad07 example. Return code=',coi_error
117
118 If ( coi_error /= 0 ) then
119 call flog( "Errors encountered during solution", 1 )
120 elseif ( stacalls == 0 .or. solcalls == 0 ) then
121 call flog( "Status or Solution routine was not called", 1 )
122 elseif ( sstat /= 1 .or. mstat /= 5 ) then
123 call flog( "Solver and Model Status was not as expected (1,5)", 1 )
124! No objective test for infeasible model
125 Else
126 Call checkdual( 'Triabad07', infeasible )
127 endif
128
129 if ( coi_free(cntvect) /= 0 ) call flog( "Error while freeing control vector",1)
130
131 call flog( "Successful Solve", 0 )
132!
133! Free solution memory
134!
135 call finalize
137End Program triabad07
138!
139! ============================================================================
140! Define information about the model:
141!
142
143!> Define information about the model
144!!
145!! @include{doc} readMatrix_params.dox
146Integer Function tria_readmatrix( lower, curr, upper, vsta, type, rhs, esta, &
147 colsta, rowno, value, nlflag, n, m, nz, &
148 usrmem )
149#ifdef dec_directives_win32
150!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
151#endif
152 implicit none
153 integer, intent (in) :: n ! number of variables
154 integer, intent (in) :: m ! number of constraints
155 integer, intent (in) :: nz ! number of nonzeros
156 real*8, intent (in out), dimension(n) :: lower ! vector of lower bounds
157 real*8, intent (in out), dimension(n) :: curr ! vector of initial values
158 real*8, intent (in out), dimension(n) :: upper ! vector of upper bounds
159 integer, intent (in out), dimension(n) :: vsta ! vector of initial variable status
160 ! (not defined here)
161 integer, intent (out), dimension(m) :: type ! vector of equation types
162 integer, intent (in out), dimension(m) :: esta ! vector of initial equation status
163 ! (not defined here)
164 real*8, intent (in out), dimension(m) :: rhs ! vector of right hand sides
165 integer, intent (in out), dimension(n+1) :: colsta ! vector with start of column indices
166 integer, intent (out), dimension(nz) :: rowno ! vector of row numbers
167 integer, intent (in out), dimension(nz) :: nlflag ! vector of nonlinearity flags
168 real*8, intent (in out), dimension(nz) :: value ! vector of matrix values
169 real*8 usrmem(*) ! optional user memory
170!
171! Information about Variables:
172! Default: Lower = -Inf, Curr = 0, and Upper = +inf.
173! Default: the status information in Vsta is not used.
174!
175! The model uses initial values for x1 and x2
176!
177 curr(1) = 0.99d0
178 curr(2) = 0.70d0
179!
180! Information about Constraints:
181! Default: Rhs = 0
182! Default: the status information in Esta and the function
183! value in FV are not used.
184! Default: Type: There is no default.
185! 0 = Equality,
186! 1 = Greater than or equal,
187! 2 = Less than or equal,
188! 3 = Non binding.
189!
190! Constraint 1: e1
191! Rhs = 1.0 and type Equality
192!
193 rhs(1) = 1.0d0
194 type(1) = 0
195!
196! Constraint 2: e2
197! Rhs = 1.0 and type Equality
198!
199 rhs(2) = 1.0d0
200 type(2) = 0
201!
202! Constraint 3: e3
203! Rhs = 4.0 and type Equality
204!
205 rhs(3) = 4.0d0
206 type(3) = 0
207!
208! Constraint 4: e4
209! Rhs = 3.5 and type Equality
210!
211 rhs(4) = 3.5d0
212 type(4) = 0
213!
214! Constraint 5: e5
215! Rhs = 0.0 and type Equality
216!
217 type(5) = 0
218!
219! Information about the Jacobian. CONOPT expects a columnwise
220! representation in Rowno, Value, Nlflag and Colsta.
221!
222! Colsta = Start of column indices (No Defaults):
223! Rowno = Row indices
224! Value = Value of derivative (by default only linear
225! derivatives are used)
226! Nlflag = 0 for linear and 1 for nonlinear derivative
227! (not needed for completely linear models)
228!
229! Indices
230! x(1) x(2) x(3)
231! 1: 1
232! 2: 5
233! 3: 2 6
234! 4: 3 7
235! 5: 4 8 9
236!
237 colsta(1) = 1
238 colsta(2) = 5
239 colsta(3) = 9
240 colsta(4) = 10
241 rowno(1) = 1
242 rowno(2) = 3
243 rowno(3) = 4
244 rowno(4) = 5
245 rowno(5) = 2
246 rowno(6) = 3
247 rowno(7) = 4
248 rowno(8) = 5
249 rowno(9) = 5
250!
251! Nonlinearity Structure: L = 0 are linear and NL = 1 are nonlinear
252! x(1) x(2) x(3)
253! 1: NL
254! 2: NL
255! 3: NL L
256! 4: NL L
257! 5: NL NL L
258!
259 nlflag(1) = 1
260 nlflag(2) = 1
261 nlflag(3) = 1
262 nlflag(4) = 1
263 nlflag(5) = 1
264 nlflag(6) = 0
265 nlflag(7) = 0
266 nlflag(8) = 1
267 nlflag(9) = 0
268!
269! Value (Linear only)
270! x(1) x(2) x(3)
271! 1: NL
272! 2: NL
273! 3: NL 3.0
274! 4: NL 1.0
275! 5: NL NL 1.0
276!
277 value(6) = 1.d0
278 value(7) = 1.d0
279 value(9) = 1.d0
280
281 tria_readmatrix = 0 ! Return value means OK
282
283end Function tria_readmatrix
284!
285!==========================================================================
286! Compute nonlinear terms and non-constant Jacobian elements
287!
288
289!> Compute nonlinear terms and non-constant Jacobian elements
290!!
291!! @include{doc} fdeval_params.dox
292Integer Function tria_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
293 n, nz, thread, usrmem )
294#ifdef dec_directives_win32
295!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
296#endif
297 implicit none
298 integer, intent (in) :: n ! number of variables
299 integer, intent (in) :: rowno ! number of the row to be evaluated
300 integer, intent (in) :: nz ! number of nonzeros in this row
301 real*8, intent (in), dimension(n) :: x ! vector of current solution values
302 real*8, intent (in out) :: g ! constraint value
303 real*8, intent (in out), dimension(n) :: jac ! vector of derivatives for current constraint
304 integer, intent (in), dimension(nz) :: jcnm ! list of variables that appear nonlinearly
305 ! in this row. Ffor information only.
306 integer, intent (in) :: mode ! evaluation mode: 1 = function value
307 ! 2 = derivatives, 3 = both
308 integer, intent (in) :: ignerr ! if 1 then errors can be ignored as long
309 ! as errcnt is incremented
310 integer, intent (in out) :: errcnt ! error counter to be incremented in case
311 ! of function evaluation errors.
312 integer, intent (in) :: thread
313 real*8 usrmem(*) ! optional user memory
314!
315! Row 1: e1 .. sqr(x1) =E= 1;
316!
317 if ( rowno == 1 ) then
318!
319! Mode = 1 or 3. G = sqr(x1)
320!
321 if ( mode == 1 .or. mode == 3 ) then
322 g = x(1)*x(1)
323 endif
324!
325! Mode = 2 or 3: Derivative values:
326!
327 if ( mode .eq. 2 .or. mode .eq. 3 ) then
328 jac(1) = 2.d0*x(1)
329 endif
330 tria_fdeval = 0
331 else if ( rowno == 2 ) then
332!
333! e2 .. sqr(x2) =E= 1;
334!
335 if ( mode == 1 .or. mode == 3 ) then
336 g = x(2)*x(2)
337 endif
338 if ( mode .eq. 2 .or. mode .eq. 3 ) then
339 jac(2) = 2.d0*x(2)
340 endif
341 tria_fdeval = 0
342 else if ( rowno == 3 .or. rowno == 4 ) then
343!
344! e3 .. sqr(x1) + x2 =E= 3;
345! e4 .. sqr(x1) + x2 =E= 3.5;
346! These row have the same nonlinear term and they are implemented
347! together
348!
349 if ( mode == 1 .or. mode == 3 ) then
350 g = x(1)*x(1)
351 endif
352 if ( mode .eq. 2 .or. mode .eq. 3 ) then
353 jac(1) = 2.d0*x(1)
354 endif
355 tria_fdeval = 0
356 else if ( rowno == 5 ) then
357!
358! e5 .. x3 =E= sqr(x1 + x2);
359!
360 if ( mode == 1 .or. mode == 3 ) then
361 g = -(x(1)+x(2))*(x(1)+x(2))
362 endif
363 if ( mode .eq. 2 .or. mode .eq. 3 ) then
364 jac(1) = -2.d0*(x(1)+x(2))
365 jac(2) = jac(1)
366 endif
367 tria_fdeval = 0
368 else
369 tria_fdeval = 1
370 endif
371
372end Function tria_fdeval
373
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
Definition comdecl.f90:170
integer function std_status(modsta, solsta, iter, objval, usrmem)
Definition comdecl.f90:126
subroutine checkdual(case, minmax)
Definition comdecl.f90:432
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
Definition comdecl.f90:243
integer function std_triord(mode, type, status, irow, icol, inf, value, resid, usrmem)
Definition comdecl.f90:327
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
Definition comdecl.f90:286
integer(c_int) function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
Definition conopt.f90:1265
integer(c_int) function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
Definition conopt.f90:1238
integer(c_int) function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
Definition conopt.f90:1212
integer(c_int) function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
Definition conopt.f90:1111
integer(c_int) function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
Definition conopt.f90:1291
integer(c_int) function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
Definition conopt.f90:1135
integer(c_int) function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
Definition conopt.f90:928
integer(c_int) function coidef_triord(cntvect, coi_triord)
define callback routine for providing the triangular order information.
Definition conopt.f90:1371
integer(c_int) function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
Definition conopt.f90:293
integer(c_int) function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
Definition conopt.f90:97
integer(c_int) function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
Definition conopt.f90:121
integer(c_int) function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
Definition conopt.f90:167
integer(c_int) function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
Definition conopt.f90:213
integer(c_int) function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
Definition conopt.f90:144
integer(c_int) function coidef_objvar(cntvect, objvar)
defines the Objective Variable.
Definition conopt.f90:257
integer(c_int) function coi_create(cntvect)
initializes CONOPT and creates the control vector.
Definition conopt.f90:1726
integer(c_int) function coi_free(cntvect)
frees the control vector.
Definition conopt.f90:1749
integer(c_int) function coi_solve(cntvect)
method for starting the solving process of CONOPT.
Definition conopt.f90:1625
integer solcalls
Definition comdecl.f90:15
integer sstat
Definition comdecl.f90:18
subroutine finalize
Definition comdecl.f90:79
integer, parameter infeasible
Definition comdecl.f90:31
integer stacalls
Definition comdecl.f90:14
subroutine flog(msg, code)
Definition comdecl.f90:62
logical do_allocate
Definition comdecl.f90:27
integer mstat
Definition comdecl.f90:17
subroutine startup
Definition comdecl.f90:41
integer function tria_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
Definition tria01.f90:257
integer function tria_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
Definition tria01.f90:140
program triabad07
Main program. A simple setup and call of CONOPT.
Definition triabad07.f90:41