CONOPT
Loading...
Searching...
No Matches
triabad08.f90
Go to the documentation of this file.
1!> @file triabad08.f90
2!! @ingroup FORT1THREAD_EXAMPLES
3!!
4!! This is a CONOPT implementation of the GAMS model:
5!!
6!! @verbatim
7!! variable x1, x2, x3;
8!! equation e1, e2, e3, e4, e5, e6;
9!!
10!! e1 .. sqr(x1) =E= 1;
11!! e2 .. sqr(x2) =E= 0;
12!! e3 .. sqr(x1) + x2 =E= 1;
13!! e4 .. sqr(x1) + x2 =E= 3.5;
14!! e5 .. x3 =E= sqr(x1 + x2);
15!! e6 .. x1 + power(x2,3) =E= 1;
16!!
17!! x1.l = 0.99;
18!! x2.l = 0.5;
19!!
20!! model m / all /;
21!! solve m using nlp maximizing x3;
22!! @endverbatim
23!!
24!! Equation e1 and e2 both depend on a single variable. e1 solves
25!! nicely but e2 converges slowly towards a point with a singular pivot.
26!! Once e1 has been solved e3 and e4 both defines x2 uniquely, but with
27!! different values. The e3-value of x2=0 is consistent with e2 and e6.
28!! The e4-value of x2=2.5 is not consistent with e2 and e6.
29!!
30!!
31!! For more information about the individual callbacks, please have a look at the source code.
32
33#if defined(_WIN32) && !defined(_WIN64)
34#define dec_directives_win32
35#endif
36
37!> Main program. A simple setup and call of CONOPT
38!!
39Program triabad08
40
42 Use conopt
43 implicit None
44!
45! Declare the user callback routines as Integer, External:
46!
47 Integer, External :: tria_readmatrix ! Mandatory Matrix definition routine defined below
48 Integer, External :: tria_fdeval ! Function and Derivative evaluation routine
49 ! needed a nonlinear model.
50 Integer, External :: std_status ! Standard callback for displaying solution status
51 Integer, External :: std_solution ! Standard callback for displaying solution values
52 Integer, External :: std_message ! Standard callback for managing messages
53 Integer, External :: std_errmsg ! Standard callback for managing error messages
54 Integer, External :: std_triord ! Standard callback for triangular order
55#ifdef dec_directives_win32
56!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
57!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
58!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Status
59!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Solution
60!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Message
61!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_ErrMsg
62!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_TriOrd
63#endif
64!
65! Control vector
66!
67 INTEGER, Dimension(:), Pointer :: cntvect
68 INTEGER :: coi_error
69
70 call startup
71!
72! Create and initialize a Control Vector
73!
74 coi_error = coi_create( cntvect )
75!
76! Tell CONOPT about the size of the model by populating the Control Vector:
77!
78 coi_error = max( coi_error, coidef_numvar( cntvect, 3 ) ) ! # variables
79 coi_error = max( coi_error, coidef_numcon( cntvect, 6 ) ) ! # constraints
80 coi_error = max( coi_error, coidef_numnz( cntvect, 11 ) ) ! # nonzeros in the Jacobian
81 coi_error = max( coi_error, coidef_numnlnz( cntvect, 7 ) ) ! # of which are nonlinear
82 coi_error = max( coi_error, coidef_optdir( cntvect, -1 ) ) ! Minimize
83 coi_error = max( coi_error, coidef_objvar( cntvect, 3 ) ) ! Objective is variable 3
84 coi_error = max( coi_error, coidef_optfile( cntvect, 'triabad08.opt' ) )
85!
86! Tell CONOPT about the callback routines:
87!
88 coi_error = max( coi_error, coidef_readmatrix( cntvect, tria_readmatrix ) )
89 coi_error = max( coi_error, coidef_fdeval( cntvect, tria_fdeval ) )
90 coi_error = max( coi_error, coidef_status( cntvect, std_status ) )
91 coi_error = max( coi_error, coidef_solution( cntvect, std_solution ) )
92 coi_error = max( coi_error, coidef_message( cntvect, std_message ) )
93 coi_error = max( coi_error, coidef_errmsg( cntvect, std_errmsg ) )
94 coi_error = max( coi_error, coidef_triord( cntvect, std_triord ) )
95
96#if defined(CONOPT_LICENSE_INT_1) && defined(CONOPT_LICENSE_INT_2) && defined(CONOPT_LICENSE_INT_3) && defined(CONOPT_LICENSE_TEXT)
97 coi_error = max( coi_error, coidef_license( cntvect, conopt_license_int_1, conopt_license_int_2, conopt_license_int_3, conopt_license_text) )
98#endif
99
100 If ( coi_error .ne. 0 ) THEN
101 write(*,*)
102 write(*,*) '**** Fatal Error while loading CONOPT Callback routines.'
103 write(*,*)
104 call flog( "Skipping Solve due to setup errors", 1 )
105 ENDIF
106!
107! Save the solution so we can check the duals:
108!
109 do_allocate = .true.
110!
111! Start CONOPT:
112!
113 coi_error = coi_solve( cntvect )
114
115 write(*,*)
116 write(*,*) 'End of Triabad08 example. Return code=',coi_error
117
118 If ( coi_error /= 0 ) then
119 call flog( "Errors encountered during solution", 1 )
120 elseif ( stacalls == 0 .or. solcalls == 0 ) then
121 call flog( "Status or Solution routine was not called", 1 )
122 elseif ( sstat /= 1 .or. mstat /= 5 ) then
123 call flog( "Solver and Model Status was not as expected (1,5)", 1 )
124! No objective test for infeasible model
125 Else
126 Call checkdual( 'Triabad08', infeasible )
127 endif
128
129 if ( coi_free(cntvect) /= 0 ) call flog( "Error while freeing control vector",1)
130
131 call flog( "Successful Solve", 0 )
132!
133! Free solution memory
134!
135 call finalize
137End Program triabad08
138!
139! ============================================================================
140! Define information about the model:
141!
142
143!> Define information about the model
144!!
145!! @include{doc} readMatrix_params.dox
146Integer Function tria_readmatrix( lower, curr, upper, vsta, type, rhs, esta, &
147 colsta, rowno, value, nlflag, n, m, nz, &
148 usrmem )
149#ifdef dec_directives_win32
150!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
151#endif
152 implicit none
153 integer, intent (in) :: n ! number of variables
154 integer, intent (in) :: m ! number of constraints
155 integer, intent (in) :: nz ! number of nonzeros
156 real*8, intent (in out), dimension(n) :: lower ! vector of lower bounds
157 real*8, intent (in out), dimension(n) :: curr ! vector of initial values
158 real*8, intent (in out), dimension(n) :: upper ! vector of upper bounds
159 integer, intent (in out), dimension(n) :: vsta ! vector of initial variable status
160 ! (not defined here)
161 integer, intent (out), dimension(m) :: type ! vector of equation types
162 integer, intent (in out), dimension(m) :: esta ! vector of initial equation status
163 ! (not defined here)
164 real*8, intent (in out), dimension(m) :: rhs ! vector of right hand sides
165 integer, intent (in out), dimension(n+1) :: colsta ! vector with start of column indices
166 integer, intent (out), dimension(nz) :: rowno ! vector of row numbers
167 integer, intent (in out), dimension(nz) :: nlflag ! vector of nonlinearity flags
168 real*8, intent (in out), dimension(nz) :: value ! vector of matrix values
169 real*8 usrmem(*) ! optional user memory
170!
171! Information about Variables:
172! Default: Lower = -Inf, Curr = 0, and Upper = +inf.
173! Default: the status information in Vsta is not used.
174!
175! The model uses initial values for x1 and x2
176!
177 curr(1) = 0.99d0
178 curr(2) = 0.50d0
179!
180! Information about Constraints:
181! Default: Rhs = 0
182! Default: the status information in Esta and the function
183! value in FV are not used.
184! Default: Type: There is no default.
185! 0 = Equality,
186! 1 = Greater than or equal,
187! 2 = Less than or equal,
188! 3 = Non binding.
189!
190! Constraint 1: e1
191! Rhs = 1.0 and type Equality
192!
193 rhs(1) = 1.0d0
194 type(1) = 0
195!
196! Constraint 2: e2
197! Rhs = 0.0 and type Equality
198!
199 rhs(2) = 0.0d0
200 type(2) = 0
201!
202! Constraint 3: e3
203! Rhs = 1.0 and type Equality
204!
205 rhs(3) = 1.0d0
206 type(3) = 0
207!
208! Constraint 4: e4
209! Rhs = 3.5 and type Equality
210!
211 rhs(4) = 3.5d0
212 type(4) = 0
213!
214! Constraint 5: e5
215! Rhs = 0.0 and type Equality
216!
217 type(5) = 0
218!
219! Constraint 6: e6
220! Rhs = 1.0 and type Equality
221!
222 rhs(6) = 1.0d0
223 type(6) = 0
224!
225! Information about the Jacobian. CONOPT expects a columnwise
226! representation in Rowno, Value, Nlflag and Colsta.
227!
228! Colsta = Start of column indices (No Defaults):
229! Rowno = Row indices
230! Value = Value of derivative (by default only linear
231! derivatives are used)
232! Nlflag = 0 for linear and 1 for nonlinear derivative
233! (not needed for completely linear models)
234!
235! Indices
236! x(1) x(2) x(3)
237! 1: 1
238! 2: 6
239! 3: 2 7
240! 4: 3 8
241! 5: 4 9 11
242! 6: 5 10
243!
244 colsta(1) = 1
245 colsta(2) = 6
246 colsta(3) = 11
247 colsta(4) = 12
248 rowno(1) = 1
249 rowno(2) = 3
250 rowno(3) = 4
251 rowno(4) = 5
252 rowno(5) = 6
253 rowno(6) = 2
254 rowno(7) = 3
255 rowno(8) = 4
256 rowno(9) = 5
257 rowno(10) = 6
258 rowno(11) = 5
259!
260! Nonlinearity Structure: L = 0 are linear and NL = 1 are nonlinear
261! x(1) x(2) x(3)
262! 1: NL
263! 2: NL
264! 3: NL L
265! 4: NL L
266! 5: NL NL L
267! 5: L NL
268!
269 nlflag(1) = 1
270 nlflag(2) = 1
271 nlflag(3) = 1
272 nlflag(4) = 1
273 nlflag(5) = 0
274 nlflag(6) = 1
275 nlflag(7) = 0
276 nlflag(8) = 0
277 nlflag(9) = 1
278 nlflag(10)= 1
279 nlflag(11)= 0
280!
281! Value (Linear only)
282! x(1) x(2) x(3)
283! 1: NL
284! 2: NL
285! 3: NL 1.0
286! 4: NL 1.0
287! 5: NL NL 1.0
288! 5: 1.0 NL
289!
290 value(5) = 1.d0
291 value(7) = 1.d0
292 value(8) = 1.d0
293 value(11) = 1.d0
294
295 tria_readmatrix = 0 ! Return value means OK
296
297end Function tria_readmatrix
298!
299!==========================================================================
300! Compute nonlinear terms and non-constant Jacobian elements
301!
302
303!> Compute nonlinear terms and non-constant Jacobian elements
304!!
305!! @include{doc} fdeval_params.dox
306Integer Function tria_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
307 n, nz, thread, usrmem )
308#ifdef dec_directives_win32
309!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
310#endif
311 implicit none
312 integer, intent (in) :: n ! number of variables
313 integer, intent (in) :: rowno ! number of the row to be evaluated
314 integer, intent (in) :: nz ! number of nonzeros in this row
315 real*8, intent (in), dimension(n) :: x ! vector of current solution values
316 real*8, intent (in out) :: g ! constraint value
317 real*8, intent (in out), dimension(n) :: jac ! vector of derivatives for current constraint
318 integer, intent (in), dimension(nz) :: jcnm ! list of variables that appear nonlinearly
319 ! in this row. Ffor information only.
320 integer, intent (in) :: mode ! evaluation mode: 1 = function value
321 ! 2 = derivatives, 3 = both
322 integer, intent (in) :: ignerr ! if 1 then errors can be ignored as long
323 ! as errcnt is incremented
324 integer, intent (in out) :: errcnt ! error counter to be incremented in case
325 ! of function evaluation errors.
326 integer, intent (in) :: thread
327 real*8 usrmem(*) ! optional user memory
328!
329! Row 1: e1 .. sqr(x1) =E= 1;
330!
331 if ( rowno == 1 ) then
332!
333! Mode = 1 or 3. G = sqr(x1)
334!
335 if ( mode == 1 .or. mode == 3 ) then
336 g = x(1)*x(1)
337 endif
338!
339! Mode = 2 or 3: Derivative values:
340!
341 if ( mode .eq. 2 .or. mode .eq. 3 ) then
342 jac(1) = 2.d0*x(1)
343 endif
344 tria_fdeval = 0
345 else if ( rowno == 2 ) then
346!
347! e2 .. sqr(x2) =E= 0;
348!
349 if ( mode == 1 .or. mode == 3 ) then
350 g = x(2)*x(2)
351 endif
352 if ( mode .eq. 2 .or. mode .eq. 3 ) then
353 jac(2) = 2.d0*x(2)
354 endif
355 tria_fdeval = 0
356 else if ( rowno == 3 .or. rowno == 4 ) then
357!
358! e3 .. sqr(x1) + x2 =E= 3;
359! e4 .. sqr(x1) + x2 =E= 3.5;
360! These row have the same nonlinear term and they are implemented
361! together
362!
363 if ( mode == 1 .or. mode == 3 ) then
364 g = x(1)*x(1)
365 endif
366 if ( mode .eq. 2 .or. mode .eq. 3 ) then
367 jac(1) = 2.d0*x(1)
368 endif
369 tria_fdeval = 0
370 else if ( rowno == 5 ) then
371!
372! e5 .. x3 =E= sqr(x1 + x2);
373!
374 if ( mode == 1 .or. mode == 3 ) then
375 g = -(x(1)+x(2))*(x(1)+x(2))
376 endif
377 if ( mode .eq. 2 .or. mode .eq. 3 ) then
378 jac(1) = -2.d0*(x(1)+x(2))
379 jac(2) = jac(1)
380 endif
381 tria_fdeval = 0
382 else if ( rowno == 6 ) then
383!
384! e6 .. x1 + power(x2,3) =E= 1;
385!
386 if ( mode == 1 .or. mode == 3 ) then
387 g = x(2)*x(2)*x(2)
388 endif
389 if ( mode .eq. 2 .or. mode .eq. 3 ) then
390 jac(2) = 3.d0*x(2)*x(2)
391 endif
392 tria_fdeval = 0
393 else
394 tria_fdeval = 1
395 endif
396
397end Function tria_fdeval
398
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
Definition comdecl.f90:170
integer function std_status(modsta, solsta, iter, objval, usrmem)
Definition comdecl.f90:126
subroutine checkdual(case, minmax)
Definition comdecl.f90:432
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
Definition comdecl.f90:243
integer function std_triord(mode, type, status, irow, icol, inf, value, resid, usrmem)
Definition comdecl.f90:327
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
Definition comdecl.f90:286
integer(c_int) function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
Definition conopt.f90:1265
integer(c_int) function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
Definition conopt.f90:1238
integer(c_int) function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
Definition conopt.f90:1212
integer(c_int) function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
Definition conopt.f90:1111
integer(c_int) function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
Definition conopt.f90:1291
integer(c_int) function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
Definition conopt.f90:1135
integer(c_int) function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
Definition conopt.f90:928
integer(c_int) function coidef_triord(cntvect, coi_triord)
define callback routine for providing the triangular order information.
Definition conopt.f90:1371
integer(c_int) function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
Definition conopt.f90:293
integer(c_int) function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
Definition conopt.f90:97
integer(c_int) function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
Definition conopt.f90:121
integer(c_int) function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
Definition conopt.f90:167
integer(c_int) function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
Definition conopt.f90:213
integer(c_int) function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
Definition conopt.f90:144
integer(c_int) function coidef_objvar(cntvect, objvar)
defines the Objective Variable.
Definition conopt.f90:257
integer(c_int) function coi_create(cntvect)
initializes CONOPT and creates the control vector.
Definition conopt.f90:1726
integer(c_int) function coi_free(cntvect)
frees the control vector.
Definition conopt.f90:1749
integer(c_int) function coi_solve(cntvect)
method for starting the solving process of CONOPT.
Definition conopt.f90:1625
integer solcalls
Definition comdecl.f90:15
integer sstat
Definition comdecl.f90:18
subroutine finalize
Definition comdecl.f90:79
integer, parameter infeasible
Definition comdecl.f90:31
integer stacalls
Definition comdecl.f90:14
subroutine flog(msg, code)
Definition comdecl.f90:62
logical do_allocate
Definition comdecl.f90:27
integer mstat
Definition comdecl.f90:17
subroutine startup
Definition comdecl.f90:41
integer function tria_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
Definition tria01.f90:257
integer function tria_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
Definition tria01.f90:140
program triabad08
Main program. A simple setup and call of CONOPT.
Definition triabad08.f90:41