CONOPT
Loading...
Searching...
No Matches
triabad08.f90
Go to the documentation of this file.
1!> @file triabad08.f90
2!! @ingroup FORT1THREAD_EXAMPLES
3!!
4!! This is a CONOPT implementation of the GAMS model:
5!!
6!! @verbatim
7!! variable x1, x2, x3;
8!! equation e1, e2, e3, e4, e5, e6;
9!!
10!! e1 .. sqr(x1) =E= 1;
11!! e2 .. sqr(x2) =E= 0;
12!! e3 .. sqr(x1) + x2 =E= 1;
13!! e4 .. sqr(x1) + x2 =E= 3.5;
14!! e5 .. x3 =E= sqr(x1 + x2);
15!! e6 .. x1 + power(x2,3) =E= 1;
16!!
17!! x1.l = 0.99;
18!! x2.l = 0.5;
19!!
20!! model m / all /;
21!! solve m using nlp maximizing x3;
22!! @endverbatim
23!!
24!! Equation e1 and e2 both depend on a single variable. e1 solves
25!! nicely but e2 converges slowly towards a point with a singular pivot.
26!! Once e1 has been solved e3 and e4 both defines x2 uniquely, but with
27!! different values. The e3-value of x2=0 is consistent with e2 and e6.
28!! The e4-value of x2=2.5 is not consistent with e2 and e6.
29!!
30!!
31!! For more information about the individual callbacks, please have a look at the source code.
32
33!> Main program. A simple setup and call of CONOPT
34!!
35Program triabad08
36
37 Use proginfo
38 Use coidef
39 implicit None
40!
41! Declare the user callback routines as Integer, External:
42!
43 Integer, External :: tria_readmatrix ! Mandatory Matrix definition routine defined below
44 Integer, External :: tria_fdeval ! Function and Derivative evaluation routine
45 ! needed a nonlinear model.
46 Integer, External :: std_status ! Standard callback for displaying solution status
47 Integer, External :: std_solution ! Standard callback for displaying solution values
48 Integer, External :: std_message ! Standard callback for managing messages
49 Integer, External :: std_errmsg ! Standard callback for managing error messages
50 Integer, External :: std_triord ! Standard callback for triangular order
51#if defined(itl)
52!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
53!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
54!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Status
55!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Solution
56!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Message
57!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_ErrMsg
58!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_TriOrd
59#endif
60!
61! Control vector
62!
63 INTEGER :: numcallback
64 INTEGER, Dimension(:), Pointer :: cntvect
65 INTEGER :: coi_error
66
67 call startup
68!
69! Create and initialize a Control Vector
70!
71 numcallback = coidef_size()
72 Allocate( cntvect(numcallback) )
73 coi_error = coidef_inifort( cntvect )
74!
75! Tell CONOPT about the size of the model by populating the Control Vector:
76!
77 coi_error = max( coi_error, coidef_numvar( cntvect, 3 ) ) ! # variables
78 coi_error = max( coi_error, coidef_numcon( cntvect, 6 ) ) ! # constraints
79 coi_error = max( coi_error, coidef_numnz( cntvect, 11 ) ) ! # nonzeros in the Jacobian
80 coi_error = max( coi_error, coidef_numnlnz( cntvect, 7 ) ) ! # of which are nonlinear
81 coi_error = max( coi_error, coidef_optdir( cntvect, -1 ) ) ! Minimize
82 coi_error = max( coi_error, coidef_objvar( cntvect, 3 ) ) ! Objective is variable 3
83 coi_error = max( coi_error, coidef_optfile( cntvect, 'triabad08.opt' ) )
84!
85! Tell CONOPT about the callback routines:
86!
87 coi_error = max( coi_error, coidef_readmatrix( cntvect, tria_readmatrix ) )
88 coi_error = max( coi_error, coidef_fdeval( cntvect, tria_fdeval ) )
89 coi_error = max( coi_error, coidef_status( cntvect, std_status ) )
90 coi_error = max( coi_error, coidef_solution( cntvect, std_solution ) )
91 coi_error = max( coi_error, coidef_message( cntvect, std_message ) )
92 coi_error = max( coi_error, coidef_errmsg( cntvect, std_errmsg ) )
93 coi_error = max( coi_error, coidef_triord( cntvect, std_triord ) )
94
95#if defined(LICENSE_INT_1) && defined(LICENSE_INT_2) && defined(LICENSE_INT_3) && defined(LICENSE_TEXT)
96 coi_error = max( coi_error, coidef_license( cntvect, license_int_1, license_int_2, license_int_3, license_text) )
97#endif
98
99 If ( coi_error .ne. 0 ) THEN
100 write(*,*)
101 write(*,*) '**** Fatal Error while loading CONOPT Callback routines.'
102 write(*,*)
103 call flog( "Skipping Solve due to setup errors", 1 )
104 ENDIF
105!
106! Save the solution so we can check the duals:
107!
108 do_allocate = .true.
109!
110! Start CONOPT:
111!
112 coi_error = coi_solve( cntvect )
113
114 write(*,*)
115 write(*,*) 'End of Triabad08 example. Return code=',coi_error
116
117 If ( coi_error /= 0 ) then
118 call flog( "Errors encountered during solution", 1 )
119 elseif ( stacalls == 0 .or. solcalls == 0 ) then
120 call flog( "Status or Solution routine was not called", 1 )
121 elseif ( sstat /= 1 .or. mstat /= 5 ) then
122 call flog( "Solver and Model Status was not as expected (1,5)", 1 )
123! No objective test for infeasible model
124 Else
125 Call checkdual( 'Triabad08', infeasible )
126 endif
127
128 if ( coi_free(cntvect) /= 0 ) call flog( "Error while freeing control vector",1)
129
130 call flog( "Successful Solve", 0 )
131
132End Program triabad08
133!
134! ============================================================================
135! Define information about the model:
136!
137
138!> Define information about the model
139!!
140!! @include{doc} readMatrix_params.dox
141Integer Function tria_readmatrix( lower, curr, upper, vsta, type, rhs, esta, &
142 colsta, rowno, value, nlflag, n, m, nz, &
143 usrmem )
144#if defined(itl)
145!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
146#endif
147 implicit none
148 integer, intent (in) :: n ! number of variables
149 integer, intent (in) :: m ! number of constraints
150 integer, intent (in) :: nz ! number of nonzeros
151 real*8, intent (in out), dimension(n) :: lower ! vector of lower bounds
152 real*8, intent (in out), dimension(n) :: curr ! vector of initial values
153 real*8, intent (in out), dimension(n) :: upper ! vector of upper bounds
154 integer, intent (in out), dimension(n) :: vsta ! vector of initial variable status
155 ! (not defined here)
156 integer, intent (out), dimension(m) :: type ! vector of equation types
157 integer, intent (in out), dimension(m) :: esta ! vector of initial equation status
158 ! (not defined here)
159 real*8, intent (in out), dimension(m) :: rhs ! vector of right hand sides
160 integer, intent (in out), dimension(n+1) :: colsta ! vector with start of column indices
161 integer, intent (out), dimension(nz) :: rowno ! vector of row numbers
162 integer, intent (in out), dimension(nz) :: nlflag ! vector of nonlinearity flags
163 real*8, intent (in out), dimension(nz) :: value ! vector of matrix values
164 real*8 usrmem(*) ! optional user memory
165!
166! Information about Variables:
167! Default: Lower = -Inf, Curr = 0, and Upper = +inf.
168! Default: the status information in Vsta is not used.
169!
170! The model uses initial values for x1 and x2
171!
172 curr(1) = 0.99d0
173 curr(2) = 0.50d0
174!
175! Information about Constraints:
176! Default: Rhs = 0
177! Default: the status information in Esta and the function
178! value in FV are not used.
179! Default: Type: There is no default.
180! 0 = Equality,
181! 1 = Greater than or equal,
182! 2 = Less than or equal,
183! 3 = Non binding.
184!
185! Constraint 1: e1
186! Rhs = 1.0 and type Equality
187!
188 rhs(1) = 1.0d0
189 type(1) = 0
190!
191! Constraint 2: e2
192! Rhs = 0.0 and type Equality
193!
194 rhs(2) = 0.0d0
195 type(2) = 0
196!
197! Constraint 3: e3
198! Rhs = 1.0 and type Equality
199!
200 rhs(3) = 1.0d0
201 type(3) = 0
202!
203! Constraint 4: e4
204! Rhs = 3.5 and type Equality
205!
206 rhs(4) = 3.5d0
207 type(4) = 0
208!
209! Constraint 5: e5
210! Rhs = 0.0 and type Equality
211!
212 type(5) = 0
213!
214! Constraint 6: e6
215! Rhs = 1.0 and type Equality
216!
217 rhs(6) = 1.0d0
218 type(6) = 0
219!
220! Information about the Jacobian. We use the standard method with
221! Rowno, Value, Nlflag and Colsta and we do not use Colno.
222!
223! Colsta = Start of column indices (No Defaults):
224! Rowno = Row indices
225! Value = Value of derivative (by default only linear
226! derivatives are used)
227! Nlflag = 0 for linear and 1 for nonlinear derivative
228! (not needed for completely linear models)
229!
230! Indices
231! x(1) x(2) x(3)
232! 1: 1
233! 2: 6
234! 3: 2 7
235! 4: 3 8
236! 5: 4 9 11
237! 6: 5 10
238!
239 colsta(1) = 1
240 colsta(2) = 6
241 colsta(3) = 11
242 colsta(4) = 12
243 rowno(1) = 1
244 rowno(2) = 3
245 rowno(3) = 4
246 rowno(4) = 5
247 rowno(5) = 6
248 rowno(6) = 2
249 rowno(7) = 3
250 rowno(8) = 4
251 rowno(9) = 5
252 rowno(10) = 6
253 rowno(11) = 5
254!
255! Nonlinearity Structure: L = 0 are linear and NL = 1 are nonlinear
256! x(1) x(2) x(3)
257! 1: NL
258! 2: NL
259! 3: NL L
260! 4: NL L
261! 5: NL NL L
262! 5: L NL
263!
264 nlflag(1) = 1
265 nlflag(2) = 1
266 nlflag(3) = 1
267 nlflag(4) = 1
268 nlflag(5) = 0
269 nlflag(6) = 1
270 nlflag(7) = 0
271 nlflag(8) = 0
272 nlflag(9) = 1
273 nlflag(10)= 1
274 nlflag(11)= 0
275!
276! Value (Linear only)
277! x(1) x(2) x(3)
278! 1: NL
279! 2: NL
280! 3: NL 1.0
281! 4: NL 1.0
282! 5: NL NL 1.0
283! 5: 1.0 NL
284!
285 value(5) = 1.d0
286 value(7) = 1.d0
287 value(8) = 1.d0
288 value(11) = 1.d0
289
290 tria_readmatrix = 0 ! Return value means OK
291
292end Function tria_readmatrix
293!
294!==========================================================================
295! Compute nonlinear terms and non-constant Jacobian elements
296!
297
298!> Compute nonlinear terms and non-constant Jacobian elements
299!!
300!! @include{doc} fdeval_params.dox
301Integer Function tria_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
302 n, nz, thread, usrmem )
303#if defined(itl)
304!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
305#endif
306 implicit none
307 integer, intent (in) :: n ! number of variables
308 integer, intent (in) :: rowno ! number of the row to be evaluated
309 integer, intent (in) :: nz ! number of nonzeros in this row
310 real*8, intent (in), dimension(n) :: x ! vector of current solution values
311 real*8, intent (in out) :: g ! constraint value
312 real*8, intent (in out), dimension(n) :: jac ! vector of derivatives for current constraint
313 integer, intent (in), dimension(nz) :: jcnm ! list of variables that appear nonlinearly
314 ! in this row. Ffor information only.
315 integer, intent (in) :: mode ! evaluation mode: 1 = function value
316 ! 2 = derivatives, 3 = both
317 integer, intent (in) :: ignerr ! if 1 then errors can be ignored as long
318 ! as errcnt is incremented
319 integer, intent (in out) :: errcnt ! error counter to be incremented in case
320 ! of function evaluation errors.
321 integer, intent (in) :: thread
322 real*8 usrmem(*) ! optional user memory
323!
324! Row 1: e1 .. sqr(x1) =E= 1;
325!
326 if ( rowno == 1 ) then
327!
328! Mode = 1 or 3. G = sqr(x1)
329!
330 if ( mode == 1 .or. mode == 3 ) then
331 g = x(1)*x(1)
332 endif
333!
334! Mode = 2 or 3: Derivative values:
335!
336 if ( mode .eq. 2 .or. mode .eq. 3 ) then
337 jac(1) = 2.d0*x(1)
338 endif
339 tria_fdeval = 0
340 else if ( rowno == 2 ) then
341!
342! e2 .. sqr(x2) =E= 0;
343!
344 if ( mode == 1 .or. mode == 3 ) then
345 g = x(2)*x(2)
346 endif
347 if ( mode .eq. 2 .or. mode .eq. 3 ) then
348 jac(2) = 2.d0*x(2)
349 endif
350 tria_fdeval = 0
351 else if ( rowno == 3 .or. rowno == 4 ) then
352!
353! e3 .. sqr(x1) + x2 =E= 3;
354! e4 .. sqr(x1) + x2 =E= 3.5;
355! These row have the same nonlinear term and they are implemented
356! together
357!
358 if ( mode == 1 .or. mode == 3 ) then
359 g = x(1)*x(1)
360 endif
361 if ( mode .eq. 2 .or. mode .eq. 3 ) then
362 jac(1) = 2.d0*x(1)
363 endif
364 tria_fdeval = 0
365 else if ( rowno == 5 ) then
366!
367! e5 .. x3 =E= sqr(x1 + x2);
368!
369 if ( mode == 1 .or. mode == 3 ) then
370 g = -(x(1)+x(2))*(x(1)+x(2))
371 endif
372 if ( mode .eq. 2 .or. mode .eq. 3 ) then
373 jac(1) = -2.d0*(x(1)+x(2))
374 jac(2) = jac(1)
375 endif
376 tria_fdeval = 0
377 else if ( rowno == 6 ) then
378!
379! e6 .. x1 + power(x2,3) =E= 1;
380!
381 if ( mode == 1 .or. mode == 3 ) then
382 g = x(2)*x(2)*x(2)
383 endif
384 if ( mode .eq. 2 .or. mode .eq. 3 ) then
385 jac(2) = 3.d0*x(2)*x(2)
386 endif
387 tria_fdeval = 0
388 else
389 tria_fdeval = 1
390 endif
391
392end Function tria_fdeval
393
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
Definition comdecl.f90:128
integer function std_status(modsta, solsta, iter, objval, usrmem)
Definition comdecl.f90:82
subroutine checkdual(case, minmax)
Definition comdecl.f90:365
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
Definition comdecl.f90:203
integer function std_triord(mode, type, status, irow, icol, inf, value, resid, usrmem)
Definition comdecl.f90:291
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
Definition comdecl.f90:248
integer function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
integer function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
integer function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
integer function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
integer function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
integer function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
integer function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
integer function coidef_triord(cntvect, coi_triord)
define callback routine for providing the triangular order information.
integer function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
Definition coistart.f90:680
integer function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
Definition coistart.f90:358
integer function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
Definition coistart.f90:437
integer function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
Definition coistart.f90:552
integer function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
Definition coistart.f90:476
integer function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
Definition coistart.f90:398
integer function coidef_objvar(cntvect, objvar)
defines the Objective Variable.
Definition coistart.f90:586
integer function coidef_size()
returns the size the Control Vector must have, measured in standard Integer units.
Definition coistart.f90:176
integer function coidef_inifort(cntvect)
initialisation method for Fortran applications.
Definition coistart.f90:314
integer function coi_solve(cntvect)
method for starting the solving process of CONOPT.
Definition coistart.f90:14
integer solcalls
Definition comdecl.f90:9
integer sstat
Definition comdecl.f90:12
integer, parameter infeasible
Definition comdecl.f90:25
integer stacalls
Definition comdecl.f90:8
subroutine flog(msg, code)
Definition comdecl.f90:56
logical do_allocate
Definition comdecl.f90:21
integer mstat
Definition comdecl.f90:11
subroutine startup
Definition comdecl.f90:35
integer function tria_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
Definition tria01.f90:265
integer function tria_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
Definition tria01.f90:145
program triabad08
Main program. A simple setup and call of CONOPT.
Definition triabad08.f90:35