CONOPT
Loading...
Searching...
No Matches
triabad09.f90
Go to the documentation of this file.
1!> @file triabad09.f90
2!! @ingroup FORT1THREAD_EXAMPLES
3!!
4!! This is a CONOPT implementation of the GAMS model:
5!!
6!! @verbatim
7!! variable x1, x2, x3;
8!! equation e1, e2, e3, e5, e6;
9!!
10!! e1 .. sqr(x1) =E= 1;
11!! e2 .. sqr(x2) =E= 0;
12!! e3 .. x1 + 0.0001*x2 =E= 1;
13!! e5 .. x3 =E= sqr(x1 + x2);
14!! e6 .. x1 + power(x2,3) =E= 1;
15!!
16!! x1.l = 0.99;
17!! x2.l = 0.5;
18!!
19!! model m / all /;
20!! solve m using nlp maximizing x3;
21!! @endverbatim
22!!
23!! Once e1 has been solved for x1 = 1 e2, e3, and e6 all have the
24!! solution x2=0, but the pivots are zero for the nonlinear constraints
25!! and very small (0.0001) for the linear constraint.
26!!
27!!
28!! For more information about the individual callbacks, please have a look at the source code.
29
30!> Main program. A simple setup and call of CONOPT
31!!
32Program triabad09
33
34 Use proginfo
35 Use coidef
36 implicit None
37!
38! Declare the user callback routines as Integer, External:
39!
40 Integer, External :: tria_readmatrix ! Mandatory Matrix definition routine defined below
41 Integer, External :: tria_fdeval ! Function and Derivative evaluation routine
42 ! needed a nonlinear model.
43 Integer, External :: std_status ! Standard callback for displaying solution status
44 Integer, External :: std_solution ! Standard callback for displaying solution values
45 Integer, External :: std_message ! Standard callback for managing messages
46 Integer, External :: std_errmsg ! Standard callback for managing error messages
47 Integer, External :: std_triord ! Standard callback for triangular order
48#if defined(itl)
49!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
50!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
51!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Status
52!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Solution
53!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Message
54!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_ErrMsg
55!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_TriOrd
56#endif
57!
58! Control vector
59!
60 INTEGER :: numcallback
61 INTEGER, Dimension(:), Pointer :: cntvect
62 INTEGER :: coi_error
63
64 call startup
65!
66! Create and initialize a Control Vector
67!
68 numcallback = coidef_size()
69 Allocate( cntvect(numcallback) )
70 coi_error = coidef_inifort( cntvect )
71!
72! Tell CONOPT about the size of the model by populating the Control Vector:
73!
74 coi_error = max( coi_error, coidef_numvar( cntvect, 3 ) ) ! # variables
75 coi_error = max( coi_error, coidef_numcon( cntvect, 5 ) ) ! # constraints
76 coi_error = max( coi_error, coidef_numnz( cntvect, 9 ) ) ! # nonzeros in the Jacobian
77 coi_error = max( coi_error, coidef_numnlnz( cntvect, 5 ) ) ! # of which are nonlinear
78 coi_error = max( coi_error, coidef_optdir( cntvect, -1 ) ) ! Minimize
79 coi_error = max( coi_error, coidef_objvar( cntvect, 3 ) ) ! Objective is variable 3
80 coi_error = max( coi_error, coidef_optfile( cntvect, 'triabad09.opt' ) )
81!
82! Tell CONOPT about the callback routines:
83!
84 coi_error = max( coi_error, coidef_readmatrix( cntvect, tria_readmatrix ) )
85 coi_error = max( coi_error, coidef_fdeval( cntvect, tria_fdeval ) )
86 coi_error = max( coi_error, coidef_status( cntvect, std_status ) )
87 coi_error = max( coi_error, coidef_solution( cntvect, std_solution ) )
88 coi_error = max( coi_error, coidef_message( cntvect, std_message ) )
89 coi_error = max( coi_error, coidef_errmsg( cntvect, std_errmsg ) )
90 coi_error = max( coi_error, coidef_triord( cntvect, std_triord ) )
91
92#if defined(LICENSE_INT_1) && defined(LICENSE_INT_2) && defined(LICENSE_INT_3) && defined(LICENSE_TEXT)
93 coi_error = max( coi_error, coidef_license( cntvect, license_int_1, license_int_2, license_int_3, license_text) )
94#endif
95
96 If ( coi_error .ne. 0 ) THEN
97 write(*,*)
98 write(*,*) '**** Fatal Error while loading CONOPT Callback routines.'
99 write(*,*)
100 call flog( "Skipping Solve due to setup errors", 1 )
101 ENDIF
102!
103! Save the solution so we can check the duals:
104!
105 do_allocate = .true.
106!
107! Start CONOPT:
108!
109 coi_error = coi_solve( cntvect )
110
111 write(*,*)
112 write(*,*) 'End of Triabad09 example. Return code=',coi_error
113
114 If ( coi_error /= 0 ) then
115 call flog( "Errors encountered during solution", 1 )
116 elseif ( stacalls == 0 .or. solcalls == 0 ) then
117 call flog( "Status or Solution routine was not called", 1 )
118 elseif ( sstat /= 1 .or. mstat /= 2 ) then
119 call flog( "Solver and Model Status was not as expected (1,2)", 1 )
120 elseif ( abs( obj-1.0d0 ) > 0.000001d0 ) then
121 call flog( "Incorrect objective returned", 1 )
122 Else
123 Call checkdual( 'Triabad09', minimize )
124 endif
125
126 if ( coi_free(cntvect) /= 0 ) call flog( "Error while freeing control vector",1)
127
128 call flog( "Successful Solve", 0 )
129
130End Program triabad09
131!
132! ============================================================================
133! Define information about the model:
134!
135
136!> Define information about the model
137!!
138!! @include{doc} readMatrix_params.dox
139Integer Function tria_readmatrix( lower, curr, upper, vsta, type, rhs, esta, &
140 colsta, rowno, value, nlflag, n, m, nz, &
141 usrmem )
142#if defined(itl)
143!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
144#endif
145 implicit none
146 integer, intent (in) :: n ! number of variables
147 integer, intent (in) :: m ! number of constraints
148 integer, intent (in) :: nz ! number of nonzeros
149 real*8, intent (in out), dimension(n) :: lower ! vector of lower bounds
150 real*8, intent (in out), dimension(n) :: curr ! vector of initial values
151 real*8, intent (in out), dimension(n) :: upper ! vector of upper bounds
152 integer, intent (in out), dimension(n) :: vsta ! vector of initial variable status
153 ! (not defined here)
154 integer, intent (out), dimension(m) :: type ! vector of equation types
155 integer, intent (in out), dimension(m) :: esta ! vector of initial equation status
156 ! (not defined here)
157 real*8, intent (in out), dimension(m) :: rhs ! vector of right hand sides
158 integer, intent (in out), dimension(n+1) :: colsta ! vector with start of column indices
159 integer, intent (out), dimension(nz) :: rowno ! vector of row numbers
160 integer, intent (in out), dimension(nz) :: nlflag ! vector of nonlinearity flags
161 real*8, intent (in out), dimension(nz) :: value ! vector of matrix values
162 real*8 usrmem(*) ! optional user memory
163!
164! Information about Variables:
165! Default: Lower = -Inf, Curr = 0, and Upper = +inf.
166! Default: the status information in Vsta is not used.
167!
168! The model uses initial values for x1 and x2
169!
170 curr(1) = 0.99d0
171 curr(2) = 0.50d0
172!
173! Information about Constraints:
174! Default: Rhs = 0
175! Default: the status information in Esta and the function
176! value in FV are not used.
177! Default: Type: There is no default.
178! 0 = Equality,
179! 1 = Greater than or equal,
180! 2 = Less than or equal,
181! 3 = Non binding.
182!
183! Constraint 1: e1
184! Rhs = 1.0 and type Equality
185!
186 rhs(1) = 1.0d0
187 type(1) = 0
188!
189! Constraint 2: e2
190! Rhs = 0.0 and type Equality
191!
192 rhs(2) = 0.0d0
193 type(2) = 0
194!
195! Constraint 3: e3
196! Rhs = 1.0 and type Equality
197!
198 rhs(3) = 1.0d0
199 type(3) = 0
200!
201! Constraint 4: e5
202! Rhs = 0.0 and type Equality
203!
204 type(4) = 0
205!
206! Constraint 5: e6
207! Rhs = 1.0 and type Equality
208!
209 rhs(5) = 1.0d0
210 type(5) = 0
211!
212! Information about the Jacobian. We use the standard method with
213! Rowno, Value, Nlflag and Colsta and we do not use Colno.
214!
215! Colsta = Start of column indices (No Defaults):
216! Rowno = Row indices
217! Value = Value of derivative (by default only linear
218! derivatives are used)
219! Nlflag = 0 for linear and 1 for nonlinear derivative
220! (not needed for completely linear models)
221!
222! Indices
223! x(1) x(2) x(3)
224! 1: 1
225! 2: 5
226! 3: 2 6
227! 4: 3 7 9
228! 5: 4 8
229!
230 colsta(1) = 1
231 colsta(2) = 5
232 colsta(3) = 9
233 colsta(4) = 10
234 rowno(1) = 1
235 rowno(2) = 3
236 rowno(3) = 4
237 rowno(4) = 5
238 rowno(5) = 2
239 rowno(6) = 3
240 rowno(7) = 4
241 rowno(8) = 5
242 rowno(9) = 4
243!
244! Nonlinearity Structure: L = 0 are linear and NL = 1 are nonlinear
245! x(1) x(2) x(3)
246! 1: NL
247! 2: NL
248! 3: L L
249! 4: NL NL L
250! 5: L NL
251!
252 nlflag(1) = 1
253 nlflag(2) = 0
254 nlflag(3) = 1
255 nlflag(4) = 0
256 nlflag(5) = 1
257 nlflag(6) = 0
258 nlflag(7) = 1
259 nlflag(8) = 1
260 nlflag(9) = 0
261!
262! Value (Linear only)
263! x(1) x(2) x(3)
264! 1: NL
265! 2: NL
266! 3: 1.0 0.0001
267! 4: NL NL 1.0
268! 5: 1.0 NL
269!
270 value(2) = 1.d0
271 value(4) = 1.d0
272 value(6) = 0.0001d0
273 value(9) = 1.d0
274
275 tria_readmatrix = 0 ! Return value means OK
276
277end Function tria_readmatrix
278!
279!==========================================================================
280! Compute nonlinear terms and non-constant Jacobian elements
281!
282
283!> Compute nonlinear terms and non-constant Jacobian elements
284!!
285!! @include{doc} fdeval_params.dox
286Integer Function tria_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
287 n, nz, thread, usrmem )
288#if defined(itl)
289!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
290#endif
291 implicit none
292 integer, intent (in) :: n ! number of variables
293 integer, intent (in) :: rowno ! number of the row to be evaluated
294 integer, intent (in) :: nz ! number of nonzeros in this row
295 real*8, intent (in), dimension(n) :: x ! vector of current solution values
296 real*8, intent (in out) :: g ! constraint value
297 real*8, intent (in out), dimension(n) :: jac ! vector of derivatives for current constraint
298 integer, intent (in), dimension(nz) :: jcnm ! list of variables that appear nonlinearly
299 ! in this row. Ffor information only.
300 integer, intent (in) :: mode ! evaluation mode: 1 = function value
301 ! 2 = derivatives, 3 = both
302 integer, intent (in) :: ignerr ! if 1 then errors can be ignored as long
303 ! as errcnt is incremented
304 integer, intent (in out) :: errcnt ! error counter to be incremented in case
305 ! of function evaluation errors.
306 integer, intent (in) :: thread
307 real*8 usrmem(*) ! optional user memory
308!
309! Row 1: e1 .. sqr(x1) =E= 1;
310!
311 if ( rowno == 1 ) then
312!
313! Mode = 1 or 3. G = sqr(x1)
314!
315 if ( mode == 1 .or. mode == 3 ) then
316 g = x(1)*x(1)
317 endif
318!
319! Mode = 2 or 3: Derivative values:
320!
321 if ( mode .eq. 2 .or. mode .eq. 3 ) then
322 jac(1) = 2.d0*x(1)
323 endif
324 tria_fdeval = 0
325 else if ( rowno == 2 ) then
326!
327! e2 .. sqr(x2) =E= 0;
328!
329 if ( mode == 1 .or. mode == 3 ) then
330 g = x(2)*x(2)
331 endif
332 if ( mode .eq. 2 .or. mode .eq. 3 ) then
333 jac(2) = 2.d0*x(2)
334 endif
335 tria_fdeval = 0
336 else if ( rowno == 4 ) then
337!
338! e5 .. x3 =E= sqr(x1 + x2);
339!
340 if ( mode == 1 .or. mode == 3 ) then
341 g = -(x(1)+x(2))*(x(1)+x(2))
342 endif
343 if ( mode .eq. 2 .or. mode .eq. 3 ) then
344 jac(1) = -2.d0*(x(1)+x(2))
345 jac(2) = jac(1)
346 endif
347 tria_fdeval = 0
348 else if ( rowno == 5 ) then
349!
350! e6 .. x1 + power(x2,3) =E= 1;
351!
352 if ( mode == 1 .or. mode == 3 ) then
353 g = x(2)*x(2)*x(2)
354 endif
355 if ( mode .eq. 2 .or. mode .eq. 3 ) then
356 jac(2) = 3.d0*x(2)*x(2)
357 endif
358 tria_fdeval = 0
359 else
360 tria_fdeval = 1
361 endif
362
363end Function tria_fdeval
364
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
Definition comdecl.f90:128
integer function std_status(modsta, solsta, iter, objval, usrmem)
Definition comdecl.f90:82
subroutine checkdual(case, minmax)
Definition comdecl.f90:365
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
Definition comdecl.f90:203
integer function std_triord(mode, type, status, irow, icol, inf, value, resid, usrmem)
Definition comdecl.f90:291
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
Definition comdecl.f90:248
integer function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
integer function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
integer function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
integer function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
integer function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
integer function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
integer function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
integer function coidef_triord(cntvect, coi_triord)
define callback routine for providing the triangular order information.
integer function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
Definition coistart.f90:680
integer function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
Definition coistart.f90:358
integer function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
Definition coistart.f90:437
integer function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
Definition coistart.f90:552
integer function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
Definition coistart.f90:476
integer function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
Definition coistart.f90:398
integer function coidef_objvar(cntvect, objvar)
defines the Objective Variable.
Definition coistart.f90:586
integer function coidef_size()
returns the size the Control Vector must have, measured in standard Integer units.
Definition coistart.f90:176
integer function coidef_inifort(cntvect)
initialisation method for Fortran applications.
Definition coistart.f90:314
integer function coi_solve(cntvect)
method for starting the solving process of CONOPT.
Definition coistart.f90:14
real *8 obj
Definition comdecl.f90:10
integer solcalls
Definition comdecl.f90:9
integer sstat
Definition comdecl.f90:12
integer, parameter minimize
Definition comdecl.f90:25
integer stacalls
Definition comdecl.f90:8
subroutine flog(msg, code)
Definition comdecl.f90:56
logical do_allocate
Definition comdecl.f90:21
integer mstat
Definition comdecl.f90:11
subroutine startup
Definition comdecl.f90:35
integer function tria_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
Definition tria01.f90:265
integer function tria_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
Definition tria01.f90:145
program triabad09
Main program. A simple setup and call of CONOPT.
Definition triabad09.f90:32