CONOPT
Loading...
Searching...
No Matches
triabad10.f90
Go to the documentation of this file.
1!> @file triabad10.f90
2!! @ingroup FORT1THREAD_EXAMPLES
3!!
4!! This is a CONOPT implementation of the GAMS model:
5!!
6!! @verbatim
7!! variable x1, x2;
8!! equation e1, e2;
9!!
10!! e1 .. power(x1,3) =E= 1;
11!! e2 .. x2 =E= x1+5;
12!!
13!! x1.l = 0.01;
14!!
15!! model m / all /;
16!! solve m using nlp maximizing x2;
17!! @endverbatim
18!!
19!!
20!! For more information about the individual callbacks, please have a look at the source code.
21
22#if defined(_WIN32) && !defined(_WIN64)
23#define dec_directives_win32
24#endif
25
26!> Main program. A simple setup and call of CONOPT
27!!
28Program triabad10
29
31 Use conopt
32 implicit None
33!
34! Declare the user callback routines as Integer, External:
35!
36 Integer, External :: tria_readmatrix ! Mandatory Matrix definition routine defined below
37 Integer, External :: tria_fdeval ! Function and Derivative evaluation routine
38 ! needed a nonlinear model.
39 Integer, External :: std_status ! Standard callback for displaying solution status
40 Integer, External :: std_solution ! Standard callback for displaying solution values
41 Integer, External :: std_message ! Standard callback for managing messages
42 Integer, External :: std_errmsg ! Standard callback for managing error messages
43 Integer, External :: std_triord ! Standard callback for triangular order
44#ifdef dec_directives_win32
45!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
46!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
47!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Status
48!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Solution
49!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Message
50!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_ErrMsg
51!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_TriOrd
52#endif
53!
54! Control vector
55!
56 INTEGER, Dimension(:), Pointer :: cntvect
57 INTEGER :: coi_error
58!
59! Create and initialize a Control Vector
60!
61 call startup
62
63 coi_error = coi_create( cntvect )
64!
65! Tell CONOPT about the size of the model by populating the Control Vector:
66!
67 coi_error = max( coi_error, coidef_numvar( cntvect, 2 ) ) ! # variables
68 coi_error = max( coi_error, coidef_numcon( cntvect, 2 ) ) ! # constraints
69 coi_error = max( coi_error, coidef_numnz( cntvect, 3 ) ) ! # nonzeros in the Jacobian
70 coi_error = max( coi_error, coidef_numnlnz( cntvect, 1 ) ) ! # of which are nonlinear
71 coi_error = max( coi_error, coidef_optdir( cntvect, -1 ) ) ! Minimize
72 coi_error = max( coi_error, coidef_objvar( cntvect, 2 ) ) ! Objective variable #
73 coi_error = max( coi_error, coidef_optfile( cntvect, 'triabad10.opt' ) )
74!
75! Tell CONOPT about the callback routines:
76!
77 coi_error = max( coi_error, coidef_readmatrix( cntvect, tria_readmatrix ) )
78 coi_error = max( coi_error, coidef_fdeval( cntvect, tria_fdeval ) )
79 coi_error = max( coi_error, coidef_status( cntvect, std_status ) )
80 coi_error = max( coi_error, coidef_solution( cntvect, std_solution ) )
81 coi_error = max( coi_error, coidef_message( cntvect, std_message ) )
82 coi_error = max( coi_error, coidef_errmsg( cntvect, std_errmsg ) )
83 coi_error = max( coi_error, coidef_triord( cntvect, std_triord ) )
84
85#if defined(CONOPT_LICENSE_INT_1) && defined(CONOPT_LICENSE_INT_2) && defined(CONOPT_LICENSE_INT_3) && defined(CONOPT_LICENSE_TEXT)
86 coi_error = max( coi_error, coidef_license( cntvect, conopt_license_int_1, conopt_license_int_2, conopt_license_int_3, conopt_license_text) )
87#endif
88
89 If ( coi_error .ne. 0 ) THEN
90 write(*,*)
91 write(*,*) '**** Fatal Error while loading CONOPT Callback routines.'
92 write(*,*)
93 call flog( "Skipping Solve due to setup errors", 1 )
94 ENDIF
95!
96! Save the solution so we can check the duals:
97!
98 do_allocate = .true.
99!
100! Start CONOPT:
101!
102 coi_error = coi_solve( cntvect )
103
104 write(*,*)
105 write(*,*) 'End of Triabad10 example. Return code=',coi_error
106
107 If ( coi_error /= 0 ) then
108 call flog( "Errors encountered during solution", 1 )
109 elseif ( stacalls == 0 .or. solcalls == 0 ) then
110 call flog( "Status or Solution routine was not called", 1 )
111 elseif ( sstat /= 1 .or. mstat /= 2 ) then
112 call flog( "Solver and Model Status was not as expected (1,2)", 1 )
113 elseif ( abs(obj-6.0d0) >= 0.0000001d0 ) then
114 call flog( "Objective value was not as expected 6.00)", 1 )
115 Else
116 Call checkdual( 'Triabad10', minimize )
117 endif
118
119 if ( coi_free(cntvect) /= 0 ) call flog( "Error while freeing control vector",1)
120
121 call flog( "Successful Solve", 0 )
123End Program triabad10
124!
125! ============================================================================
126! Define information about the model:
127!
128
129!> Define information about the model
130!!
131!! @include{doc} readMatrix_params.dox
132Integer Function tria_readmatrix( lower, curr, upper, vsta, type, rhs, esta, &
133 colsta, rowno, value, nlflag, n, m, nz, &
134 usrmem )
135#ifdef dec_directives_win32
136!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_ReadMatrix
137#endif
138 implicit none
139 integer, intent (in) :: n ! number of variables
140 integer, intent (in) :: m ! number of constraints
141 integer, intent (in) :: nz ! number of nonzeros
142 real*8, intent (in out), dimension(n) :: lower ! vector of lower bounds
143 real*8, intent (in out), dimension(n) :: curr ! vector of initial values
144 real*8, intent (in out), dimension(n) :: upper ! vector of upper bounds
145 integer, intent (in out), dimension(n) :: vsta ! vector of initial variable status
146 ! (not defined here)
147 integer, intent (out), dimension(m) :: type ! vector of equation types
148 integer, intent (in out), dimension(m) :: esta ! vector of initial equation status
149 ! (not defined here)
150 real*8, intent (in out), dimension(m) :: rhs ! vector of right hand sides
151 integer, intent (in out), dimension(n+1) :: colsta ! vector with start of column indices
152 integer, intent (out), dimension(nz) :: rowno ! vector of row numbers
153 integer, intent (in out), dimension(nz) :: nlflag ! vector of nonlinearity flags
154 real*8, intent (in out), dimension(nz) :: value ! vector of matrix values
155 real*8 usrmem(*) ! optional user memory
156!
157! Information about Variables:
158! Default: Lower = -Inf, Curr = 0, and Upper = +inf.
159! Default: the status information in Vsta is not used.
160!
161! The model uses initial values for x1 and x2
162!
163 curr(1) = 0.01d0
164!
165! Information about Constraints:
166! Default: Rhs = 0
167! Default: the status information in Esta and the function
168! value in FV are not used.
169! Default: Type: There is no default.
170! 0 = Equality,
171! 1 = Greater than or equal,
172! 2 = Less than or equal,
173! 3 = Non binding.
174!
175! Constraint 1: e1
176! Rhs = 1.0 and type Equality
177!
178 rhs(1) = 1.0d0
179 type(1) = 0
180!
181! Constraint 2: e2
182! Rhs = 5.0 and type Equality
183!
184 rhs(2) = 5.0d0
185 type(2) = 0
186!
187! Information about the Jacobian. CONOPT expects a columnwise
188! representation in Rowno, Value, Nlflag and Colsta.
189!
190! Colsta = Start of column indices (No Defaults):
191! Rowno = Row indices
192! Value = Value of derivative (by default only linear
193! derivatives are used)
194! Nlflag = 0 for linear and 1 for nonlinear derivative
195! (not needed for completely linear models)
196!
197! Indices
198! x(1) x(2)
199! 1: 1
200! 2: 2 3
201!
202 colsta(1) = 1
203 colsta(2) = 3
204 colsta(3) = 4
205 rowno(1) = 1
206 rowno(2) = 2
207 rowno(3) = 2
208!
209! Nonlinearity Structure: L = 0 are linear and NL = 1 are nonlinear
210! x(1) x(2) x(3)
211! 1: NL
212! 2: L L
213!
214 nlflag(1) = 1
215 nlflag(2) = 0
216 nlflag(3) = 0
217!
218! Value (Linear only)
219! x(1) x(2) x(3)
220! 1: NL
221! 2: -1.0 1.0
222!
223 value(2) = -1.d0
224 value(3) = 1.d0
225
226 tria_readmatrix = 0 ! Return value means OK
227
228end Function tria_readmatrix
229!
230!==========================================================================
231! Compute nonlinear terms and non-constant Jacobian elements
232!
233
234!> Compute nonlinear terms and non-constant Jacobian elements
235!!
236!! @include{doc} fdeval_params.dox
237Integer Function tria_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
238 n, nz, thread, usrmem )
239#ifdef dec_directives_win32
240!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Tria_FDEval
241#endif
242 implicit none
243 integer, intent (in) :: n ! number of variables
244 integer, intent (in) :: rowno ! number of the row to be evaluated
245 integer, intent (in) :: nz ! number of nonzeros in this row
246 real*8, intent (in), dimension(n) :: x ! vector of current solution values
247 real*8, intent (in out) :: g ! constraint value
248 real*8, intent (in out), dimension(n) :: jac ! vector of derivatives for current constraint
249 integer, intent (in), dimension(nz) :: jcnm ! list of variables that appear nonlinearly
250 ! in this row. Ffor information only.
251 integer, intent (in) :: mode ! evaluation mode: 1 = function value
252 ! 2 = derivatives, 3 = both
253 integer, intent (in) :: ignerr ! if 1 then errors can be ignored as long
254 ! as errcnt is incremented
255 integer, intent (in out) :: errcnt ! error counter to be incremented in case
256 ! of function evaluation errors.
257 integer, intent (in) :: thread
258 real*8 usrmem(*) ! optional user memory
259!
260! Row 1: e1 .. power(x1,3) =E= 1;
261!
262 if ( rowno == 1 ) then
263!
264! Mode = 1 or 3. G = sqr(x1)
265!
266 if ( mode == 1 .or. mode == 3 ) then
267 g = x(1)*x(1)*x(1)
268 endif
269!
270! Mode = 2 or 3: Derivative values:
271!
272 if ( mode .eq. 2 .or. mode .eq. 3 ) then
273 jac(1) = 3.d0*x(1)*x(1)
274 endif
275 tria_fdeval = 0
276 else
277 tria_fdeval = 1
278 endif
279
280end Function tria_fdeval
281
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
Definition comdecl.f90:132
integer function std_status(modsta, solsta, iter, objval, usrmem)
Definition comdecl.f90:88
subroutine checkdual(case, minmax)
Definition comdecl.f90:394
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
Definition comdecl.f90:205
integer function std_triord(mode, type, status, irow, icol, inf, value, resid, usrmem)
Definition comdecl.f90:289
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
Definition comdecl.f90:248
integer(c_int) function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
Definition conopt.f90:1265
integer(c_int) function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
Definition conopt.f90:1238
integer(c_int) function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
Definition conopt.f90:1212
integer(c_int) function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
Definition conopt.f90:1111
integer(c_int) function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
Definition conopt.f90:1291
integer(c_int) function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
Definition conopt.f90:1135
integer(c_int) function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
Definition conopt.f90:928
integer(c_int) function coidef_triord(cntvect, coi_triord)
define callback routine for providing the triangular order information.
Definition conopt.f90:1371
integer(c_int) function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
Definition conopt.f90:293
integer(c_int) function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
Definition conopt.f90:97
integer(c_int) function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
Definition conopt.f90:121
integer(c_int) function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
Definition conopt.f90:167
integer(c_int) function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
Definition conopt.f90:213
integer(c_int) function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
Definition conopt.f90:144
integer(c_int) function coidef_objvar(cntvect, objvar)
defines the Objective Variable.
Definition conopt.f90:257
integer(c_int) function coi_create(cntvect)
initializes CONOPT and creates the control vector.
Definition conopt.f90:1726
integer(c_int) function coi_free(cntvect)
frees the control vector.
Definition conopt.f90:1749
integer(c_int) function coi_solve(cntvect)
method for starting the solving process of CONOPT.
Definition conopt.f90:1625
real *8 obj
Definition comdecl.f90:16
integer solcalls
Definition comdecl.f90:15
integer sstat
Definition comdecl.f90:18
integer, parameter minimize
Definition comdecl.f90:31
integer stacalls
Definition comdecl.f90:14
subroutine flog(msg, code)
Definition comdecl.f90:62
logical do_allocate
Definition comdecl.f90:27
integer mstat
Definition comdecl.f90:17
subroutine startup
Definition comdecl.f90:41
integer function tria_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
Definition tria01.f90:253
integer function tria_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
Definition tria01.f90:136
program triabad10
Main program. A simple setup and call of CONOPT.
Definition triabad10.f90:30