CONOPT
Loading...
Searching...
No Matches
leastsq5.f90
Go to the documentation of this file.
1!> @file leastsq5.f90
2!! @ingroup FORT1THREAD_EXAMPLES
3!!
4!!
5!! This model is similar to leastsq, but this time we define 2nd order
6!! information in the form of a 2DDir routine.
7!!
8!! We solve the following nonlinear least squares model:
9!!
10!! \f[
11!! \min \sum_i res_{i}^2 \\
12!!
13!! \sum_j ( a_{ij}x_j + b_{ij}x_j^2 ) + res_i = obs_i
14!! \f]
15!!
16!! where \f$a\f$, \f$b\f$, and \f$obs\f$ are known data, and \f$res\f$ and \f$x\f$ are the
17!! variables of the model.
18!!
19!!
20!! For more information about the individual callbacks, please have a look at the source code.
21
22#if defined(_WIN32) && !defined(_WIN64)
23#define dec_directives_win32
24#endif
25
26REAL FUNCTION rndx( )
27!
28! Defines a pseudo random number between 0 and 1
29!
30 IMPLICIT NONE
31
32 Integer, save :: seed = 12359
33
34 seed = mod(seed*1027+25,1048576)
35 rndx = float(seed)/float(1048576)
36
37END FUNCTION rndx
38
39subroutine defdata
40!
41! Define values for A, B, and Obs
42!
43 Use lsq_700
44 IMPLICIT NONE
45
46 Integer :: i, j
47 real*8, Parameter :: xtarg = -1.0
48 real*8, Parameter :: noise = 1.0
49 Real, External :: Rndx
50 real*8 :: o
51
52 do i = 1, nobs
53 o = 0.d0
54 do j = 1, dimx
55 a(i,j) = rndx()
56 b(i,j) = rndx()
57 o = o + a(i,j) * xtarg + b(i,j) * xtarg**2
58 enddo
59 obs(i) = o + noise * rndx()
60 enddo
61
62end subroutine defdata
63!
64! Main program.
65!
66!> Main program. A simple setup and call of CONOPT
67!!
68Program leastsquare
69
71 Use conopt
72 Use lsq_700
73 implicit None
74!
75! Declare the user callback routines as Integer, External:
76!
77 Integer, External :: lsq_readmatrix ! Mandatory Matrix definition routine defined below
78 Integer, External :: lsq_fdeval ! Function and Derivative evaluation routine
79 ! needed a nonlinear model.
80 Integer, External :: lsq_2ddir ! Directional 2nd derivative routine
81 Integer, External :: std_status ! Standard callback for displaying solution status
82 Integer, External :: std_solution ! Standard callback for displaying solution values
83 Integer, External :: std_message ! Standard callback for managing messages
84 Integer, External :: std_errmsg ! Standard callback for managing error messages
85#ifdef dec_directives_win32
86!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Lsq_ReadMatrix
87!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Lsq_FDEval
88!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Lsq_2DDir
89!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Status
90!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Solution
91!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_Message
92!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Std_ErrMsg
93#endif
94!
95! Control vector
96!
97 INTEGER, Dimension(:), Pointer :: cntvect
98 INTEGER :: coi_error
99
100 call startup
101!
102! Define data
103!
104 Call defdata
105!
106! Create and initialize a Control Vector
107!
108 coi_error = coi_create( cntvect )
109!
110! Tell CONOPT about the size of the model by populating the Control Vector:
111!
112 coi_error = max( coi_error, coidef_numvar( cntvect, nobs + dimx ) )
113 coi_error = max( coi_error, coidef_numcon( cntvect, nobs + 1 ) )
114 coi_error = max( coi_error, coidef_numnz( cntvect, nobs * (dimx+2) ) )
115 coi_error = max( coi_error, coidef_numnlnz( cntvect, nobs * (dimx+1) ) )
116 coi_error = max( coi_error, coidef_optdir( cntvect, -1 ) ) ! Minimize
117 coi_error = max( coi_error, coidef_objcon( cntvect, nobs + 1 ) ) ! Objective is last constraint
118 coi_error = max( coi_error, coidef_optfile( cntvect, 'leastsq5.opt' ) )
119!
120! Tell CONOPT about the callback routines:
121!
122 coi_error = max( coi_error, coidef_readmatrix( cntvect, lsq_readmatrix ) )
123 coi_error = max( coi_error, coidef_fdeval( cntvect, lsq_fdeval ) )
124 coi_error = max( coi_error, coidef_2ddir( cntvect, lsq_2ddir ) )
125 coi_error = max( coi_error, coidef_status( cntvect, std_status ) )
126 coi_error = max( coi_error, coidef_solution( cntvect, std_solution ) )
127 coi_error = max( coi_error, coidef_message( cntvect, std_message ) )
128 coi_error = max( coi_error, coidef_errmsg( cntvect, std_errmsg ) )
129 coi_error = max( coi_error, coidef_debugfv( cntvect, 0 ) ) ! Debug Fdeval on or off
130
131#if defined(CONOPT_LICENSE_INT_1) && defined(CONOPT_LICENSE_INT_2) && defined(CONOPT_LICENSE_INT_3) && defined(CONOPT_LICENSE_TEXT)
132 coi_error = max( coi_error, coidef_license( cntvect, conopt_license_int_1, conopt_license_int_2, conopt_license_int_3, conopt_license_text) )
133#endif
134
135 If ( coi_error .ne. 0 ) THEN
136 write(*,*)
137 write(*,*) '**** Fatal Error while loading CONOPT Callback routines.'
138 write(*,*)
139 call flog( "Skipping Solve due to setup errors", 1 )
140 ENDIF
141!
142! Start CONOPT:
143!
144 coi_error = coi_solve( cntvect )
145
146 write(*,*)
147 write(*,*) 'End of Least Square example 5. Return code=',coi_error
148
149 If ( coi_error /= 0 ) then
150 call flog( "Errors encountered during solution", 1 )
151 elseif ( stacalls == 0 .or. solcalls == 0 ) then
152 call flog( "Status or Solution routine was not called", 1 )
153 elseif ( sstat /= 1 .or. mstat /= 2 ) then
154 call flog( "Solver and Model Status was not as expected (1,2)", 1 )
155 elseif ( abs( obj - 19.44434311d0 ) > 1.d-7 ) then
156 call flog( "Incorrect objective returned", 1 )
157 endif
158
159 if ( coi_free(cntvect) /= 0 ) call flog( "Error while freeing control vector",1)
160
161 call flog( "Successful Solve", 0 )
162!
163! Free solution memory
164!
165 call finalize
167End Program leastsquare
168!
169! ============================================================================
170! Define information about the model:
171!
172
173!> Define information about the model
174!!
175!! @include{doc} readMatrix_params.dox
176Integer Function lsq_readmatrix( lower, curr, upper, vsta, type, rhs, esta, &
177 colsta, rowno, value, nlflag, n, m, nz, &
178 usrmem )
179#ifdef dec_directives_win32
180!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Lsq_ReadMatrix
181#endif
182 Use lsq_700
183 implicit none
184 integer, intent (in) :: n ! number of variables
185 integer, intent (in) :: m ! number of constraints
186 integer, intent (in) :: nz ! number of nonzeros
187 real*8, intent (in out), dimension(n) :: lower ! vector of lower bounds
188 real*8, intent (in out), dimension(n) :: curr ! vector of initial values
189 real*8, intent (in out), dimension(n) :: upper ! vector of upper bounds
190 integer, intent (in out), dimension(n) :: vsta ! vector of initial variable status
191 ! (not defined here)
192 integer, intent (out), dimension(m) :: type ! vector of equation types
193 integer, intent (in out), dimension(m) :: esta ! vector of initial equation status
194 ! (not defined here)
195 real*8, intent (in out), dimension(m) :: rhs ! vector of right hand sides
196 integer, intent (in out), dimension(n+1) :: colsta ! vector with start of column indices
197 integer, intent (out), dimension(nz) :: rowno ! vector of row numbers
198 integer, intent (in out), dimension(nz) :: nlflag ! vector of nonlinearity flags
199 real*8, intent (in out), dimension(nz) :: value ! vector of matrix values
200 real*8 usrmem(*) ! optional user memory
201
202 Integer :: i, j, k
203!
204! Information about Variables:
205! Default: Lower = -Inf, Curr = 0, and Upper = +inf.
206! Default: the status information in Vsta is not used.
207!
208 do i = 1, dimx
209 curr(i) = -0.8d0
210 enddo
211!
212! Information about Constraints:
213! Default: Rhs = 0
214! Default: the status information in Esta and the function
215! value in FV are not used.
216! Default: Type: There is no default.
217! 0 = Equality,
218! 1 = Greater than or equal,
219! 2 = Less than or equal,
220! 3 = Non binding.
221!
222! Constraints 1 to Nobs:
223! Rhs = Obs(i) and type Equality
224!
225 do i = 1, nobs
226 rhs(i) = obs(i)
227 type(i) = 0
228 enddo
229!
230! Constraint Nobs + 1 (Objective)
231! Rhs = 0 and type Non binding
232!
233 type(nobs+1) = 3
234!
235! Information about the Jacobian. CONOPT expects a columnwise
236! representation in Rowno, Value, Nlflag and Colsta.
237!
238! Colsta = Start of column indices (No Defaults):
239! Rowno = Row indices
240! Value = Value of derivative (by default only linear
241! derivatives are used)
242! Nlflag = 0 for linear and 1 for nonlinear derivative
243! (not needed for completely linear models)
244!
245!
246! Indices
247! x(i) res(j)
248! j: NL L=1
249! obj: NL
250! 3:
251!
252 k = 1
253 do j = 1, dimx
254 colsta(j) = k
255 do i = 1, nobs
256 rowno(k) = i
257 nlflag(k) = 1
258 k = k + 1
259 enddo
260 enddo
261 do i = 1, nobs
262 colsta(dimx+i) = k
263 rowno(k) = i
264 nlflag(k) = 0
265 value(k) = 1.d0
266 k = k + 1
267 rowno(k) = nobs+1
268 nlflag(k) = 1
269 k = k + 1
270 enddo
271 colsta(dimx+nobs+1) = k
272
273 lsq_readmatrix = 0 ! Return value means OK
274
275end Function lsq_readmatrix
276!
277!==========================================================================
278! Compute nonlinear terms and non-constant Jacobian elements
279!
280
281!> Compute nonlinear terms and non-constant Jacobian elements
282!!
283!! @include{doc} fdeval_params.dox
284Integer Recursive function lsq_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
285 n, nz, thread, usrmem )
286#ifdef dec_directives_win32
287!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Lsq_FDEval
288#endif
289 use lsq_700
290 implicit none
291 integer, intent (in) :: n ! number of variables
292 integer, intent (in) :: rowno ! number of the row to be evaluated
293 integer, intent (in) :: nz ! number of nonzeros in this row
294 real*8, intent (in), dimension(n) :: x ! vector of current solution values
295 real*8, intent (in out) :: g ! constraint value
296 real*8, intent (in out), dimension(n) :: jac ! vector of derivatives for current constraint
297 integer, intent (in), dimension(nz) :: jcnm ! list of variables that appear nonlinearly
298 ! in this row. Ffor information only.
299 integer, intent (in) :: mode ! evaluation mode: 1 = function value
300 ! 2 = derivatives, 3 = both
301 integer, intent (in) :: ignerr ! if 1 then errors can be ignored as long
302 ! as errcnt is incremented
303 integer, intent (in out) :: errcnt ! error counter to be incremented in case
304 ! of function evaluation errors.
305 integer, intent (in) :: thread
306 real*8 usrmem(*) ! optional user memory
307
308 integer :: i,j
309 real*8 :: s
310!
311! Row 1: the objective function is nonlinear
312!
313 if ( rowno .eq. nobs+1 ) then
314!
315! Mode = 1 or 3. Function value: G = sum(i, res(i)**2)
316!
317 if ( mode .eq. 1 .or. mode .eq. 3 ) then
318 s = 0.d0
319 do i = 1, nobs
320 s = s + x(dimx+i)**2
321 enddo
322 g = s
323 endif
324!
325! Mode = 2 or 3: Derivative values:
326!
327 if ( mode .eq. 2 .or. mode .eq. 3 ) then
328 do i = 1, nobs
329 jac(dimx+i) = 2*x(dimx+i)
330 enddo
331 endif
332!
333! Row 1 to Nobs: The observation definitions:
334!
335 else
336!
337! Mode = 1 or 3: Function value - x-part only
338!
339 if ( mode .eq. 1 .or. mode .eq. 3 ) then
340 s = 0.d0
341 do j = 1, dimx
342 s = s + a(rowno,j)*x(j) + b(rowno,j)*x(j)**2
343 enddo
344 g = s
345 endif
346!
347! Mode = 2 or 3: Derivatives
348!
349 if ( mode .eq. 2 .or. mode .eq. 3 ) then
350 do j = 1, dimx
351 jac(j) = a(rowno,j) + 2.d0*b(rowno,j)*x(j)
352 enddo
353 endif
354 endif
355 lsq_fdeval = 0
356
357end Function lsq_fdeval
358
359
360!> Computes the second derivative of a constraint in a direction
361!!
362!! @include{doc} 2DDir_params.dox
363Integer Function lsq_2ddir( X, DX, D2G, ROWNO, JCNM, NODRV, N, NJ, THREAD, USRMEM )
364#ifdef dec_directives_win32
365!DEC$ ATTRIBUTES STDCALL, REFERENCE, NOMIXED_STR_LEN_ARG :: Lsq_2DDir
366#endif
367 Use lsq_700
368 implicit none
369 INTEGER, Intent(IN) :: rowno, n, nj, thread
370 INTEGER, Intent(IN OUT) :: nodrv
371 INTEGER, Dimension(NJ), Intent(IN) :: jcnm
372 real*8, Dimension(N), Intent(IN) :: x
373 real*8, Dimension(N), Intent(IN) :: dx
374 real*8, Dimension(N), Intent(OUT) :: d2g
375 real*8, Intent(IN OUT) :: usrmem(*)
376 integer :: i, j
377
378 if ( rowno .eq. nobs+1 ) then
379!
380! Objective row: sum(i, res(i)**2 )
381!
382 do j = 1, dimx
383 d2g(j) = 0.d0
384 enddo
385 do i = 1, nobs
386 d2g(dimx+i) = 2.d0*dx(dimx+i)
387 enddo
388 else
389!
390! Constraint row with b(i,j)*x(j)**2 as only nonlinear term
391!
392 do j = 1, dimx
393 d2g(j) = 2.d0*b(rowno,j)*dx(j)
394 enddo
395 do i = 1, nobs
396 d2g(dimx+i) = 0.d0
397 enddo
398 endif
399
400 lsq_2ddir = 0
401
402End Function lsq_2ddir
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
Definition comdecl.f90:170
integer function std_status(modsta, solsta, iter, objval, usrmem)
Definition comdecl.f90:126
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
Definition comdecl.f90:243
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
Definition comdecl.f90:286
integer(c_int) function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
Definition conopt.f90:1265
integer(c_int) function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
Definition conopt.f90:1238
integer(c_int) function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
Definition conopt.f90:1212
integer(c_int) function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
Definition conopt.f90:1111
integer(c_int) function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
Definition conopt.f90:1291
integer(c_int) function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
Definition conopt.f90:1135
integer(c_int) function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
Definition conopt.f90:928
integer(c_int) function coidef_2ddir(cntvect, coi_2ddir)
define callback routine for computing the second derivative for a constraint in a direction.
Definition conopt.f90:1421
integer(c_int) function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
Definition conopt.f90:293
integer(c_int) function coidef_debugfv(cntvect, debugfv)
turn Debugging of FDEval on and off.
Definition conopt.f90:387
integer(c_int) function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
Definition conopt.f90:97
integer(c_int) function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
Definition conopt.f90:121
integer(c_int) function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
Definition conopt.f90:167
integer(c_int) function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
Definition conopt.f90:213
integer(c_int) function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
Definition conopt.f90:144
integer(c_int) function coidef_objcon(cntvect, objcon)
defines the Objective Constraint.
Definition conopt.f90:239
integer(c_int) function coi_create(cntvect)
initializes CONOPT and creates the control vector.
Definition conopt.f90:1726
integer(c_int) function coi_free(cntvect)
frees the control vector.
Definition conopt.f90:1749
integer(c_int) function coi_solve(cntvect)
method for starting the solving process of CONOPT.
Definition conopt.f90:1625
integer function lsq_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
Definition leastl1.f90:170
integer function lsq_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
Definition leastl1.f90:291
integer function lsq_2ddir(x, dx, d2g, rowno, jcnm, nodrv, n, nj, thread, usrmem)
Computes the second derivative of a constraint in a direction.
#define dimx
Definition leastsq.c:16
#define nobs
Definition leastsq.c:15
void defdata()
Defines the data for the problem.
Definition leastsq.c:35
float rndx()
Defines a pseudo random number between 0 and 1.
Definition leastsq.c:22
program leastsquare
Main program. A simple setup and call of CONOPT.
Definition leastsq.f90:68
#define nj
Definition mp_trans.c:46
real *8 obj
Definition comdecl.f90:16
integer solcalls
Definition comdecl.f90:15
integer sstat
Definition comdecl.f90:18
subroutine finalize
Definition comdecl.f90:79
integer stacalls
Definition comdecl.f90:14
subroutine flog(msg, code)
Definition comdecl.f90:62
integer mstat
Definition comdecl.f90:17
subroutine startup
Definition comdecl.f90:41