15 public static void main(String argv[]) {
16 System.loadLibrary(
"conoptjni4");
18 String
name =
"leastsq5";
21 LeastSq5ModelData
model =
new LeastSq5ModelData(700, 500);
31 int license_int_1 = Integer.parseInt(System.getenv(
"CONOPT_LICENSE_INT_1"));
32 int license_int_2 = Integer.parseInt(System.getenv(
"CONOPT_LICENSE_INT_2"));
33 int license_int_3 = Integer.parseInt(System.getenv(
"CONOPT_LICENSE_INT_3"));
34 String
license_text = System.getenv(
"CONOPT_LICENSE_TEXT");
38 }
catch (Exception e) {
39 System.out.println(
"Unable to set license: " + e.getMessage());
48 conopt.objectiveValue(), 19.4443, 0.001);
56class LeastSq5ModelData
extends ModelData {
57 private int seed = 12359;
70 public int[] consresidual;
73 public LeastSq5ModelData(
int numobs,
int dimensionx) {
77 this.dimx = dimensionx;
79 this.A =
new double[nobs * dimx];
80 this.B =
new double[nobs * dimx];
81 this.Obs =
new double[nobs];
87 private double rndx() {
88 seed = seed * 1027 + 25;
89 int times = seed / 1_048_576;
90 seed = seed - 1_048_576 * times;
91 return (
double) seed / 1_048_576.0;
95 private void defineData() {
96 final double Xtarg = -1.0;
97 final double Noise = 1.0;
100 for (
int i = 0; i < nobs; ++i) {
102 for (
int j = 0; j < dimx; ++j) {
105 O += A[
k] * Xtarg + B[
k] * (Xtarg * Xtarg);
108 Obs[i] = O + Noise * rndx();
118 List<Integer> varxList =
new ArrayList<>(dimx);
119 for (
int i = 0; i < dimx; ++i) {
121 varxList.add(varidx);
124 List<Integer> varresList =
new ArrayList<>(nobs);
125 for (
int i = 0; i < nobs; ++i) {
127 varresList.add(varidx);
130 this.varx = varxList.stream().mapToInt(Integer::intValue).toArray();
131 this.varres = varresList.stream().mapToInt(Integer::intValue).toArray();
136 this.consresidual =
new int[nobs];
137 for (
int i = 0; i < nobs; ++i) {
140 int[] varidx =
new int[m];
141 double[] coeffs =
new double[m];
142 int[] nlf =
new int[m];
144 for (
int j = 0; j < dimx; ++j) {
151 varidx[dimx] = varres[i];
156 consresidual[i] = considx;
160 double[] objCoeffs =
new double[nobs];
161 int[] objNlf =
new int[nobs];
162 for (
int i = 0; i < nobs; ++i) {
185 if (rowno == consobj) {
187 for (
int i = 0; i < nobs; i++) {
188 sum += Math.pow(x[varres[i]], 2);
193 int k = rowno * dimx;
195 for (
int i = 0; i < dimx; i++) {
196 sum += A[k] * x[varx[i]] + B[k] * Math.pow(x[varx[i]], 2);
210 assert x.length == jac.length;
212 if (rowno == consobj) {
213 for (
int i = 0; i < nobs; i++) {
214 jac[varres[i]] = 2 * x[varres[i]];
218 int k = rowno * dimx;
219 for (
int i = 0; i < dimx; i++) {
220 jac[varx[i]] = A[k] + 2 * B[k] * x[varx[i]];
231 assert x.length == d2g.length;
232 assert dx.length == d2g.length;
234 if (rowno == consobj) {
238 for (
int i = 0; i < dimx; i++)
240 for (
int i = 0; i < nobs; i++)
241 d2g[varres[i]] = 2.0 * dx[varres[i]];
247 int k = rowno * dimx;
248 for (
int i = 0; i < dimx; i++) {
249 d2g[varx[i]] = 2.0 * B[k] * dx[varx[i]];
252 for (
int i = 0; i < nobs; i++)
static final ConstraintType Eq
static final ConstraintType Free
A class that can be extended to build and solve a model using Conopt.
static final ObjectiveElement Constraint
static final SDEvaluationType Constraint
static final Sense Minimize
static void main(String argv[])
static int checkSolve(String name, int model_status, int solution_status, double objective, double expected_objective, double tol)
addConstraint(self, *args)
Overload 1: adds a constraint to the problem.
setObjectiveElement(self, elem, elemindex)
sets the index for the objective variable or constraint
addVariable(self, *args)
Overload 1: adds a variable to the model.
setOptimizationSense(self, sense)
sets the optimisation direction.
setSDEvaluationType(self, sdevaltype)
informs CONOPT of the method for evaluating the second derivative
void evaluateDirectionalSD(double[] x, double[] dx, double[] d2g, int rowno, int[] jacnum, int thread)
computes the directional second derivative for a single constraint
void evaluateNonlinearJacobian(double[] x, double[] jac, int rowno, int[] jacnum, boolean ignerr, int thread)
callback method for evaluating the jacobian for the nonlinear terms in a given row
void buildModel()
adds variables and constraints to the model
double evaluateNonlinearTerm(double[] x, int rowno, boolean ignerr, int thread)
callback method for evaluating the nonlinear terms in a given row