40 INTEGER,
Dimension(:),
Pointer :: cntvect
82 real*8 time0, time1, time2
88 coi_error = coi_createfort( cntvect )
95 coi_error = max( coi_error,
coidef_numnz( cntvect, 6*ne ) )
99 coi_error = max( coi_error,
coidef_optfile( cntvect,
'mp_elec.opt' ) )
110#if defined(LICENSE_INT_1) && defined(LICENSE_INT_2) && defined(LICENSE_INT_3) && defined(LICENSE_TEXT)
111 coi_error = max( coi_error,
coidef_license( cntvect, license_int_1, license_int_2, license_int_3, license_text) )
114 If ( coi_error .ne. 0 )
THEN
116 write(*,*)
'**** Fatal Error while loading CONOPT Callback routines.'
118 call flog(
"Skipping Solve due to setup errors", 1 )
124 time0 = omp_get_wtime()
126 time1 = omp_get_wtime() - time0
129 write(*,*)
'End of Electron example single thread. Return code=',coi_error
131 If ( coi_error /= 0 )
then
132 call flog(
"One Thread: Errors encountered during solution", 1 )
133 elseif ( stacalls == 0 .or. solcalls == 0 )
then
134 call flog(
"One Thread: Status or Solution routine was not called", 1 )
135 elseif ( sstat /= 1 .or. mstat /= 2 )
then
136 call flog(
"One Thread: Solver and Model Status was not as expected (1,2)", 1 )
143 time0 = omp_get_wtime()
145 time2 = omp_get_wtime() - time0
148 write(*,*)
'End of Electron example multi thread. Return code=',coi_error
150 If ( coi_error /= 0 )
then
151 call flog(
"Multi Thread: Errors encountered during solution", 1 )
152 elseif ( stacalls == 0 .or. solcalls == 0 )
then
153 call flog(
"Multi Thread: Status or Solution routine was not called", 1 )
154 elseif ( sstat /= 1 .or. mstat /= 2 )
then
155 call flog(
"Multi Thread: Solver and Model Status was not as expected (1,2)", 1 )
158 if ( coi_free( cntvect ) /= 0 )
call flog(
"Error while freeing control vector", 1 )
161 write(*,
"('Time for single thread',f10.3)") time1
162 write(*,
"('Time for multi thread',f10.3)") time2
163 write(*,
"('Speedup ',f10.3)") time1/time2
164 write(*,
"('Efficiency ',f10.3)") time1/time2/omp_get_max_threads()
166 call flog(
"Successful Solve", 0 )
177 seed = mod(seed*1027+25,1048576)
178 rndx = float(seed)/float(1048576)
190 colsta, rowno, value, nlflag, n, m, nz, &
196 integer,
intent (in) :: n
197 integer,
intent (in) :: m
198 integer,
intent (in) :: nz
199 real*8,
intent (in out),
dimension(n) :: lower
200 real*8,
intent (in out),
dimension(n) :: curr
201 real*8,
intent (in out),
dimension(n) :: upper
202 integer,
intent (in out),
dimension(n) :: vsta
204 integer,
intent (out),
dimension(m) ::
type
205 integer,
intent (in out),
dimension(m) :: esta
207 real*8,
intent (in out),
dimension(m) :: rhs
208 integer,
intent (in out),
dimension(n+1) :: colsta
209 integer,
intent (out),
dimension(nz) :: rowno
210 integer,
intent (in out),
dimension(nz) :: nlflag
211 real*8,
intent (in out),
dimension(nz) ::
value
216 real*8,
parameter :: pi = 3.141592
218 Real,
External ::
rndx
229 curr(i ) = cos(theta)*sin(phi)
230 curr(i+ ne) = sin(theta)*sin(phi)
231 curr(i+2*ne) = cos(phi)
313Integer Function elec_fdeval( x, g, jac, rowno, jcnm, mode, ignerr, errcnt, &
314 n, nz, thread, usrmem )
319 integer,
intent (in) :: n
320 integer,
intent (in) :: rowno
321 integer,
intent (in) :: nz
322 real*8,
intent (in),
dimension(n) :: x
323 real*8,
intent (in out) :: g
324 real*8,
intent (in out),
dimension(n) :: jac
325 integer,
intent (in),
dimension(nz) :: jcnm
327 integer,
intent (in) :: mode
329 integer,
intent (in) :: ignerr
331 integer,
intent (in out) :: errcnt
333 integer,
intent (in) :: thread
338 real*8 :: dist, dist32, tx, ty, tz
344 if ( rowno == ne+1 )
then
348 if ( mode .eq. 1 .or. mode .eq. 3 )
then
352 dist = (x(i)-x(j))**2 + (x(i+ne)-x(j+ne))**2 + (x(i+2*ne)-x(j+2*ne))**2
353 g = g + 1.d0/sqrt(dist)
360 if ( mode .eq. 2 .or. mode .eq. 3 )
then
366 dist = (x(i)-x(j))**2 + (x(i+ne)-x(j+ne))**2 + (x(i+2*ne)-x(j+2*ne))**2
367 dist32 = (1.d0/sqrt(dist))**3
368 tx = -(x(i)-x(j))*dist32
369 ty = -(x(i+ne)-x(j+ne))*dist32
370 tz = -(x(i+2*ne)-x(j+2*ne))*dist32
373 jac(i+ne) = jac(i+ne) + ty
374 jac(j+ne) = jac(j+ne) - ty
375 jac(i+2*ne) = jac(i+2*ne) + tz
376 jac(j+2*ne) = jac(j+2*ne) - tz
386 if ( mode .eq. 1 .or. mode .eq. 3 )
then
387 g = x(i)**2 + x(i+ne)**2 + x(i+2*ne)**2
392 if ( mode .eq. 2 .or. mode .eq. 3 )
then
394 jac(i+ne) = 2.d0*x(i+ne)
395 jac(i+2*ne) = 2.d0*x(i+2*ne)
integer function std_solution(xval, xmar, xbas, xsta, yval, ymar, ybas, ysta, n, m, usrmem)
integer function std_status(modsta, solsta, iter, objval, usrmem)
integer function std_message(smsg, dmsg, nmsg, llen, usrmem, msgv)
integer function std_errmsg(rowno, colno, posno, msglen, usrmem, msg)
integer function elec_fdeval(x, g, jac, rowno, jcnm, mode, ignerr, errcnt, n, nz, thread, usrmem)
Compute nonlinear terms and non-constant Jacobian elements.
integer function elec_readmatrix(lower, curr, upper, vsta, type, rhs, esta, colsta, rowno, value, nlflag, n, m, nz, usrmem)
Define information about the model.
integer function coidef_fdeval(cntvect, coi_fdeval)
define callback routine for performing function and derivative evaluations.
integer function coidef_errmsg(cntvect, coi_errmsg)
define callback routine for returning error messages for row, column or Jacobian elements.
integer function coidef_message(cntvect, coi_message)
define callback routine for handling messages returned during the solution process.
integer function coidef_readmatrix(cntvect, coi_readmatrix)
define callback routine for providing the matrix data to CONOPT.
integer function coidef_status(cntvect, coi_status)
define callback routine for returning the completion status.
integer function coidef_solution(cntvect, coi_solution)
define callback routine for returning the final solution values.
integer function coidef_optfile(cntvect, optfile)
define callback routine for defining an options file.
integer function coidef_threads(cntvect, threads)
number of threads allowed internally in CONOPT.
integer function coidef_license(cntvect, licint1, licint2, licint3, licstring)
define the License Information.
integer function coidef_numvar(cntvect, numvar)
defines the number of variables in the model.
integer function coidef_objcon(cntvect, objcon)
defines the Objective Constraint.
integer function coidef_numnz(cntvect, numnz)
defines the number of nonzero elements in the Jacobian.
integer function coidef_optdir(cntvect, optdir)
defines the Optimization Direction.
integer function coidef_numnlnz(cntvect, numnlnz)
defines the Number of Nonlinear Nonzeros.
integer function coidef_numcon(cntvect, numcon)
defines the number of constraints in the model.
integer function coi_solve(cntvect)
method for starting the solving process of CONOPT.
float rndx()
Defines a pseudo random number between 0 and 1.
program electron
Main program. A simple setup and call of CONOPT.
subroutine flog(msg, code)